Peijun Zhang

Peijun is the Director of the electron Bio-Imaging Centre (eBIC).
Email: peijun.zhang@diamond.ac.ukTel: +44 (0) 1235 77 8878
Peijun is the Director of the electron Bio-Imaging Centre (eBIC).
Email: peijun.zhang@diamond.ac.uk
Dr. Peijun Zhang obtained her Ph.D. in molecular biophysics from University Virginia, M.S. in physics and B.S. in electrical engineering from Nanjing University. She carried out postdoctoral work at the National Cancer Institute. In 2006, she joined the faculty at the University of Pittsburgh School of Medicine as an assistant professor, and was promoted to associate professor in 2012. Her research focuses on the structural and functional studies of large molecular complexes and assemblies, viruses and cellular machineries using integrated structural, biochemical and computational approaches to understand biological complexity. Dr. Zhang received many awards, including the Carnegie Science Emerging Female Scientist Award, Senior Vice Chancellor’s Award, United States Department of Health and Human Services “On-the-Spot” Award.
Her role at Diamond, as the Director of eBIC, is establishing and leading eBIC to become a world-leading center for research, expertise and training in cryoEM and a user facility providing access to cutting-edge cryoEM technologies. eBIC focuses on using state-of-the-art electron microscopic techniques to determine the 3D structures of molecules, cells and tissues at high resolution, as well as developing new methods and technologies to advance 3D EM imaging.
My research programme is aimed to obtain an integrated, atomistic understanding of the molecular mechanisms of large viral and cellular protein complexes and assemblies by developing novel technologies for high-resolution cryoEM, with advanced, complementary methods for biological analysis and computational modeling, as such large systems have challenged the limits of structural biology methods.
We are currently focused on the following three main research areas:
1. HIV-1 pathogenesis: capsid assembly, maturation, and interactions with host cell factors
2. Mechanisms of signal transduction and transmission in bacterial chemotaxis
3. Develop and apply novel technologies in high resolution cryoEM
My research at Diamond focuses on CryoEM technology development. Driven by biological inquiries, I aim to develop tools and cutting-edge technologies, such as those inspired by bottlenecks that I have had to overcome, towards 1) near-atomic resolution in molecular cryoET by sub-tomogram averaging, and 2) 3D protein localization in the cellular cryoET, and to apply these technologies to rapidly advance towards a clearer understanding of the intricate interplay between pathogens and host cells. These efforts will have a broad impact well beyond my own research.
My other research activities involve human pathogens, such as HIV-1 and pathogenic bacterial cells. In particular, I am interested in HIV-1 capsid assmebly, maturation and its interactions with host cellular factors that inhibit or enhance viral infectivity, as well as the remarkable bacterial chemotaxis sensory signaling arrays that are crucial for colonization and infection. Understanding the structural details of these large systems, at atomic level, is critical for developing new antimicrobial and antiHIV/AIDS drugs.
Peer-reviewed Primary Publications (* indicates first or corresponding author)
Diamond Light Source is the UK's national synchrotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire.
Copyright © 2020 Diamond Light Source
Diamond Light Source Ltd
Diamond House
Harwell Science & Innovation Campus
Didcot
Oxfordshire
OX11 0DE
Diamond Light Source® and the Diamond logo are registered trademarks of Diamond Light Source Ltd