Timur Kim

profilephoto

Timur Kim is Beamline scientist on I05. Timur graduated Physics Department of Novosibirsk State University, Russia in 1997. Received his PhD from the Dresden University of Technology in 2004, working on ARPES studies of the inter-plane interaction role in the electronic structure of high Tc cuprates. After Dresden he worked as post-doc at synchrotrons at the University of Aarhus, Denmark and Paul Scherrer Institute, Switzerland. Prior to joining Diamond he was working in Germany at BESSY synchrotron where he was involved in installation and commissioning of “1-cubed ARPES” end station.

Email: timur.kim@diamond.ac.uk
Tel: +44 (0) 1235 77 8278

Techniques and Disciplines

Other Specialist Areas

  • superconductivity

Latest Publications

Please Wait

Research Expertise

  1. Research Expertise
  2. Collaborations
  3. Publications
  4. Biography
Research Expertise -

Current Research Interests

My current research area involves Angle-Resolved PhotoElectron Spectroscopy (ARPES) studies of unconventional superconductors and low-dimensional systems such as transition metal chalcogenides.

Materials with strong electronic correlations are in the focus of solid state research because they exhibit interesting novel physical properties such as metal-insulator transitions, colossal magneto-resistance, quantum criticality and high-temperature superconductivity etc. Phenomenon of superconductivity in such systems also has been already used in a many technological applications is still not well understood from both theoretical and experimental perspectives. Angle-resolved photoemission spectroscopy (ARPES) allows studying fingerprints of interactions between electronic quasiparticles in such correlated electron systems. Applied to high-temperature superconductors, this technique provides decisive information about the mechanism of pairing.

The discovery of iron-based superconductors in 2008 sparked activity all over the globe in order to search for the pairing mechanism in the first family high-temperature superconductor different from the cuprates. The very fact of another family of high-temperature superconductivity appearance gives hope for other, yet undiscovered, classes of materials with possibly higher transition temperature. An understanding what are the important processes in iron based superconductors is crucial for the field of superconductivity in general. Here at Diamond the high energy and angular resolutions of modern photoelectron detectors combined with ability to tune photon energy and polarization of the synchrotron light make ARPES a key method to study momentum anisotropy and temperature dependence of the superconducting gap as well as electron correlations or self-energy effects. This information could reveal the underlying mechanism of the electron pairing in such unconventional superconductors.
Studies of the electronic structure of topological insulators, correlated oxides and transition metal chalcogenides.
 
On the beamline I provide support for users working in condense matter research, with main interest in superconductor studies.
Here at Diamond the high energy and angular resolutions of modern photoelectron detectors combined with ability to tune photon energy and polarization of the synchrotron light make ARPES a key method to study momentum anisotropy and temperature dependence of the superconducting gap as well as electron correlations or self-energy effects. This information could reveal the underlying mechanism of the electron pairing in such unconventional superconductors.
 

I am also involved in studies of electronic structure of in-situ grown sub and monolayer materials, such as silicene and germanene.

 

Collaborations - +

Collaborations

  • Working with collaborators at IFW-Dresden to study electronic structure of iron pnictide superconductors and topological insulators.
     
  • Working with collaborators at University of Oxford to study interplay between structural and electronic structure of superconducting iron chalcogenides and other non-conventional superconductors.

  • Working with collaborators at Royal Holloway University of London to study theory of structural and electronic transitions in superconducting iron chalcogenides. Co-supervising PhD student at RHUL.

     

 

Publications - +

Full List of Publications – Timur Kim (1 July 2020)

142

141

140

139

138

137

136

  • Erik Haubold, Alexander Fedorov, Igor P. Rusinov, Tatiana V. Menshchikova, Viola Duppel, Daniel Friedrich, Florian Pielnhofer, Richard Weihrich, Arno Pfitzner, Alexander Zeugner, Anna Isaeva, Setti Thirupathaiah, Yevhen Kushnirenko, Emile Rienks, Timur Kim, Evgueni V. Chulkov, Bernd Büchner, Sergey V. Borisenko
    Possible experimental realization of a basic Z2 topological semimetal in GaGeTe - APL Materials 7, 121106 (2019).

135

134

  • J.-R. Soh, F. de Juan, M. G. Vergniory, N. B. M. Schröter, M. C. Rahn, D. Y. Yan, M. Bristow, P. A. Reiss, J. N. Blandy, Y. F. Guo, Y. G. Shi, T. K. Kim, A. McCollam, S. H. Simon, Y. Chen, A. I. Coldea, A. T. Boothroyd
    An ideal Weyl semimetal induced by magnetic exchange - Phys. Rev. B 100, 121104(R) (2019).

133

  • D.F. Liu, A.J. Liang, E.K. Liu, Q.N. Xu, Y.W. Li, C. Chen, D. Pei, D, W.J. Shi, S.K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L.X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, Y. L. Chen
    Magnetic Weyl semimetal phase in a Kagomé crystal - Science, 365, 1282 (2019).

132

  • R. C. Vidal, H. Bentmann, T. R. F. Peixoto, A. Zeugner, S. Moser, C. H. Min, S. Schatz, K. Kissner, M. Ünzelmann, C. I. Fornari, H. B. Vasili, M. Valvidares, K. Sakamoto, J. Fujii, I. Vobornik, T. K. Kim, R. J. Koch, C. Jozwiak, A. Bostwick, J. D. Denlinger, E. Rotenberg, J. Buck, M. Hoesch, F. Diekmann, S. Rohlf, M. Kalläne, K. Rossnagel, M. M. Otrokov, E.V. Chulkov, M. Ruck, A. Isaeva, F. Reinert
    Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4(0001) - Phys. Rev. B 100, 121104(R) (2019).

131

  • Sergey Borisenko, Daniil Evtushinsky, Quinn Gibson, Alexander Yaresko, Klaus Koepernik, Timur Kim, Mazhar Ali, Jeroen van den Brink, Moritz Hoesch, Alexander Fedorov, Erik Haubold, Yevhen Kushnirenko, Ivan Soldatov, Rudolf Schäfer & Robert J. Cava
    Time-reversal symmetry breaking type-II Weyl state in YbMnBi2 - Nature Communications, 10, 3424 (2019).

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113

112

  • A. Generalov, J. Falke, I. A. Nechaev, M. M. Otrokov, M. Güttler, A. Chikina, K. Kliemt, S. Seiro, K. Kummer, S. Danzenbächer, D. Usachov, T. K. Kim, P. Dudin, E. V. Chulkov, C. Laubschat, C. Geibel, C. Krellner, and D. V. Vyalikh
    Strong spin-orbit coupling in the noncentrosymmetric Kondo lattice - Phys. Rev. B 98, 115157 (2018).

111

110

109

108

  • Boris V. Senkovskiy, Dmitry Yu. Usachov, Alexander V. Fedorov, Tomas Marangoni, Danny Haberer, Cesare Tresca, Gianni Profeta, Vasile Caciuc, Shigeru Tsukamoto, Nicolae Atodiresei, Niels Ehlen, Chaoyu Chen, Jose Avila, Maria C. Asensio, Andrei Yu. Varykhalov, Alexei Nefedov, Christof Wöll, Timur K. Kim, Moritz Hoesch, Felix R. Fischer, and Alexander Grüneis
    Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint - ASC Nano12, 7571 (2018).

107

  • Jiagui Feng, Deepnarayan Biswas, Akhil Rajan, Matthew D. Watson, Federico Mazzola, Oliver J. Clark, Kaycee Underwood, Igor Marković, Martin McLaren, Andrew Hunter, David M. Burn, Liam B. Duffy, Sourabh Barua, Geetha Balakrishnan, François Bertran, Patrick Le Fèvre, Timur K. Kim, Gerrit van der Laan, Thorsten Hesjedal, Peter Wahl, and Phil D. C. King
    Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe2 - Nano Lett.18, 4493 (2018).

106

105

104

103

102

101

100

99

98

97

96

95

94

93

  • D. Biswas, A. M. Ganose, R. Yano, J. M. Riley, L. Bawden, O. J. Clark, J. Feng, L. Collins-Mcintyre, W. Meevasana, T. K. Kim, M. Hoesch, J. E. Rault, T. Sasagawa, D. O. Scanlon, P. D. C. King
    Narrow-band anisotropic electronic structure of ReS2 - Phys. Rev. B.96, 085205 (2017).

92

91

90

89

88

87

  • D. Sutter, C.G. Fatuzzo, S. Moser, M. Kim, R. Fittipaldi, A. Vecchione, V. Granata, Y. Sassa, F. Cossalter, G. Gatti, M. Grioni, H.M. Ronnow, N.C. Plumb, C.E. Matt, M. Shi, M. Hoesch, T.K. Kim, T.R. Chang, H.T. Jeng, C. Jozwiak, A. Bostwick, E. Rotenberg, A. Georges, T. Neupert, J. Chang
    Hallmarks of Hund's coupling in the Mott insulator Ca2RuO4 - Nature Communications 8, 15176 (2017).

86

85

  • Ilya Belopolski, Su-Yang Xu, Nikesh Koirala, Chang Liu, Guang Bian, Vladimir N. Strocov, Guoqing Chang, Madhab Neupane, Nasser Alidoust, Daniel Sanchez, Hao Zheng, Matthew Brahlek, Victor Rogalev, Timur Kim, Nicholas C. Plumb, Chaoyu Chen, François Bertran, Patrick Le Fèvre, Amina Taleb-Ibrahimi, Maria-Carmen Asensio, Ming Shi, Hsin Lin, Moritz Hoesch, Seongshik Oh, M. Zahid Hasan
    A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases - Science Advances 3, e1501692 (2017).

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

  • Pallavi Kushwaha, Veronika Sunko, Philip J. W. Moll, Lewis Bawden, Jonathon M. Riley, Nabhanila Nandi, Helge Rosner, Marcus P. Schmidt, Frank Arnold, Elena Hassinger, Timur K. Kim, Moritz Hoesch, Andrew P. Mackenzie and Phil D. C. King
    Nearly free electrons in a 5d delafossite oxide metal - Science Advances 1, 1500692 (2015).

65

64

63

  • L. Bawden, J. M. Riley, C. H. Kim, R. Sankar, E. J. Monkman, D. E. Shai, H. I. Wei, E. Lochocki, J. W. Wells, W. Meevasana, T. K. Kim, M. Hoesch, Y. Ohtsubo, P. Le Fèvre, C. J. Fennie, K. M. Shen, F. C. Chou, P. D. C. King
    Hierarchical spin-orbital polarisation of a giant Rashba system - Science Advances 1, 1500495 (2015).

62

61

60

59

  • M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies, A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S. Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T. Wolf, A. I. Coldea
    Emergence of the nematic electronic state in FeSe - Phys. Rev. B 91, 155106 (2015).

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

  • T. K. Kim, A. N. Yaresko, V. B. Zabolotnyy, A. A. Kordyuk, D. V. Evtushinsky, N. H. Sung, B. K. Cho, T. Samuely, P. Szabó, J. G. Rodrigo, J. T. Park, D. S. Inosov, P. Samuely, B. Büchner, S. V. Borisenko
    Conventional superconductivity in SrPd2Ge2 - Phys. Rev. B 85, 014520 (2012).

38

37

36

35

34

33

32

  • Chylarecka Dorota, Kim Timur, Tarafder Kartick, Müller Kathrin, Gödel Kathrin, Czekaj Izabela, Waeckerlin Christian, Cinchetti Mirko, Ali Md. Ehesan, Piamonteze Cinthia, Schmitt Felix, Wüstenburg Jan-Peter, Ziegler Christiane, Nolting Frithjof, Aeschlimann Martin, Oppenee Peter, Ballav Nirmalya, Jung Thomas
    Indirect Magnetic Coupling of Manganese-Porphyrin to Ferromagnetic Cobalt Substrate - J. Phys. Chem. C 115, 1295 (2011)

31

30

29

28

  • S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. Büchner
    Superconductivity without Nesting in LiFeAs - Phys. Rev. Lett. 105, 067002 (2010).

27

26

25

24

23

22

21

  • T. K. Kim, J. Wells, C. Kirkegaard, Z. Li, S. V. Hoffmann, J. E. Gayone, I. Fernandez-Torrente, P. Haberle, J. I. Pascual, K. T. Moore, A. J. Schwartz, H. He, J. C. H. Spence, K. H. Downing, S. Lazar, F. D. Tichelaar, S. V. Borisenko, M. Knupfer and Ph. Hofmann
    Evidence against a charge density wave on Bi(111) - Phys. Rev. B 72, 085440 (2005).

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

  • J.M. Auerhammer, T. Kim, M. Knupfer, M.S. Golden, J. Fink, N. Tagmatarchis and K. Prassides
    HREELS investigations of adsorbed (C59N)2 - Electronic Properties of Novel Materials - Molecular Nanostructures, 544, 103 (2000).

3

2

1

last updated 1.07.2020

 

Biography - +

Biography

Timur Kim graduated Physics Department of Novosibirsk State University, Russia in 1997. He received his PhD from the Dresden University of Technology in 2004, working on ARPES studies of the inter-plane interaction role in the electronic structure of high Tc cuprates. After Dresden he had post-doc experience at synchrotrons at the University of Aarhus, Denmark and Paul Scherrer Institute, Switzerland. Prior to joining Diamond he was working in Germany at BESSY synchrotron where he was involved in installation and commissioning of “1-cubed ARPES” end station.

Diamond Light Source

Diamond Light Source is the UK's national synchrotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire.

Copyright © 2020 Diamond Light Source

 

Diamond Light Source Ltd
Diamond House
Harwell Science & Innovation Campus
Didcot
Oxfordshire
OX11 0DE

See on Google Maps

Diamond Light Source® and the Diamond logo are registered trademarks of Diamond Light Source Ltd