What other research is being done on I22?Read On I22 Science Highlights
A peak in global emissions from energy generation is predicted for 20201, so the search for cost-effective and efficient means of generating energy via renewable sources is on. Between 2012 and 2013, there was a 20% increase in electricity generation from solar power in the European Union2, signifying a substantial growth in the investigation and application solar technology.
Solar cells (or photovoltaic cells) are devices that convert light energy into electricity by absorbing photons into a negatively-charged semi-conducting material, and releasing electrons when this material becomes saturated with light. There are many different types of solar cells, but at the forefront of this technology are perovskite cells. Perovskite cells have high efficiencies and low production costs, and as such are the fastest-advancing solar technology to date.
A team of scientists sought to study how processing conditions affect the crystal structure and efficiency of the perovskite cells. The team focused on comparing atmospheric conditions during a procedure called annealing, which involved heat and vapour treatment. A crystallographic technique known as in situ wide-angle X-ray scattering (WAXS) performed at Diamond’s Small Angle Scattering & Diffraction beamline (I22), enabled the formation of the perovskite cells to be studied in real-time when annealed in differing atmospheres. It was discovered that cells annealed in air had a higher quality crystal structure and electrical efficiency than those annealed in nitrogen. This result is of great importance as it not only identifies a means of increasing efficiency, it also demonstrates a clear correlation between the structural and electrical properties of the cells, which is paramount for their future commercial development.
What was done?
The high efficiency of the perovskite cells can be attributed to their highly crystalline framework which has a very precise and symmetrical structure. However, despite many advances being made in the electrical performance of the cells, the interplay between their efficiency and crystal structure was unknown. This link was explored through the application of the synchrotron.
Scientists from the University of Cambridge, the University of Oxford, and the Adolphe Merkle Institute in Switzerland investigated the influence of different atmospheres (air versus nitrogen) on the annealing of perovskite films deposited from a mixed halide precursor. The samples consisted of powder obtained from spin-coated films, and the WAXS on I22 was performed while annealing at 100 °C for 2.5 hours. A wide q-range was employed to map out the structural features that appeared during annealing. Dr Alessandro Sepe, group leader of the synchrotron studies at the University of Cambridge, who led the synchrotron study team explained: “the WAXS technique allowed us to see the crystal properties of the photovoltaic cell in real-time at a very high resolution. We knew what we wanted to observe, but we were unsure what we could expect to see, so we had to adapt the parameters of the experiment as we gathered the results.”
Fig.1: 2D in situ WAXS maps showing the kinetics of the crystal structure of bulk perovskite monitored in real-time while annealing the material at 100 °C for 2.5 h in air (a) and nitrogen (d). The 2D reconstructions illustrates defined reflections that confirms retaining of the perovskite crystallinity upon annealing, which explains the increasing in performance of the final devices. Pathak et al. (2015).
What was discovered?
Fig. 2: 3D in situ WAXS map showing the kinetics of the crystal structure of bulk perovskite monitored in real-time while annealing the material at 100 °C for 2.5 h in air. The 3D reconstruction illustrates defined reflections that confirms retaining of the perovskite crystallinity upon annealing, which explains the increasing in performance of the final devices.
Diamond Light Source is the UK's national synchrotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire.
Copyright © 2022 Diamond Light Source
Diamond Light Source Ltd
Diamond House
Harwell Science & Innovation Campus
Didcot
Oxfordshire
OX11 0DE
Diamond Light Source® and the Diamond logo are registered trademarks of Diamond Light Source Ltd
Registered in England and Wales at Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom. Company number: 4375679. VAT number: 287 461 957. Economic Operators Registration and Identification (EORI) number: GB287461957003.