

SAXS at Diamond

Beamline Progress and Science highlights

Small-angle, non-crystalline diffraction provides essential information on the structure and dynamics of large molecular assemblies in low ordered environments. These are characteristic of living organisms and many complex materials such as polymers and colloids.

SAXS at Diamond

Beamline Progress and Science highlights

- Used for
> Archaeology
> Biology
> Biomaterials
> Ceramics
> Colloids
> Cultural heritage
> Environmental science
$>$ Forensic science
$>$ Liquid crystals
> Mineralised tissue
$>$ Polymers
> Surfactants

Probing the Length Scales

Crystallography Microstructure Structure

$10^{-11} \mathrm{~m}$

Scattering

X-ray scattering is probing distances that are large compared to inter-atomic distances. Characteristics are:

Random orientation of particles (i.e. no long-range order) leads to scattering rather than diffraction (determination of size and shape)

Electron density variations at the particle-matrix interface cause x-rays to scatter.

The scattered intensity, $I(q)$, is measured in terms of. the scattering vector, q.

Scattering by two point centres

From G. Porod, Ch2 in "Glatter and Kratky"
diamond

X-ray scattering

Amplitude: $A(q)=\int_{V r} \rho(r) e^{-i r \cdot q} d V r$ (Volume Integral)
Where $\rho(r)$ is the relates to the electron density and q is the scattering angle

Particle in solution => thermal motion => Particles have a random orientation/x-ray beam. The sample is isotropic.

Only the spherical average of the scattered intensity is experimentally accessible.

$$
\mathrm{I}(\mathrm{q})=<\mathrm{A}(\mathrm{q}) \cdot \mathrm{A}^{\star}(\mathrm{q})>
$$

Porod's law: specific surface and interface

- When two media are separated by a sharp interface, the scattered intensity follows an asymptotic law in the high q region:

$$
I(q)=A q^{-4}+B .
$$

- This law is called the Porod's limit and has more sophisticated expressions in the case of complicated interfaces.
- The asymptotic value, when the electronic contrast of the sample is known, and when the intensity is expressed in absolute scale, allows the calculation of the specific surface S (in $\mathrm{cm}^{2} / \mathrm{cm}^{3}$) of the particles.

Surface Fractal Laws

- For a smooth surface $S(r)=r^{2}$, and for a rough surface $S(r)=r^{d s}$, where ds is the surface fractal dimension that varies from 2 to 3
- I(q) proportional to $q^{d s-6}$
- Surface fractals display power-law decays weaker than Porod's Law and are termed positive deviations from Porod's Law.

Solution I(c,q)

Motif (Protein) P(0,q)

$$
I(q) \propto \frac{d \sum(q)}{d \Omega}=\frac{N}{V} V_{\text {paricice }}^{2}\left(\rho_{\text {sample }}-\rho_{\text {matrix }}\right)^{2} P(q) S(q)
$$

- From SAXS pattern:
. Particle size
- Particle shape

Polydispersity Kinetics

What do we mean by "size"?

Radius of gyration:
$\mathrm{R}_{\mathrm{g}}{ }^{2}$ is the average squared distance of the scatterers from the centre of the object

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{g}}{ }^{2}=\left(1^{2}+1^{2}+1^{2}+2^{2}+2^{2}+3^{2}\right) / 6=20 / 6 \\
& \mathrm{R}_{\mathrm{g}}=\sqrt{3} 333=1.32
\end{aligned}
$$

Form Factor for simple shapes

Solution SAXS: $\mathrm{R}_{\mathrm{g}}, \mathrm{I}_{0}$ and $\mathrm{P}(\mathrm{r})$

Rg = slope $=$ shape function independent radius
 I (at $q=0$) or intercept proportional to number of particles / volume of solution

PDF = shape and size info

SAXS studies on silica templated with polyelectrolyte-surfactant complexes

Vernier templating and synthesis of a 12-porphyrin nanoring.

diamond
Melanie C. O'Sullivan, Johannes K. Sprafke, Dmitry Kondratuk, Corentin Rinfray, Timothy D. W. Claridge, Alex Saywell,
Matthew O. Blunt, James N. O'Shea, Peter H. Beton, Marc Malfois, Harry L. Anderson,

Size polydispersity

$$
\begin{aligned}
& I(q)=\Delta \rho^{2} \int_{0}^{\infty} P(q, R) D\left(R, \sigma_{R}\right) d R \\
& P(q, R)=\left[V \frac{3[\sin (q R)-q R \cos (q R)]}{(q R)^{3}}\right]^{2} \\
& D\left(R, \sigma_{R}\right)=\frac{1}{\sigma_{R} \sqrt{2 \pi}} \exp \left[-\frac{\left(R-R_{a}\right)^{2}}{2 \sigma_{R}{ }^{2}}\right]
\end{aligned}
$$

Size polydispersity

Smeared form factor $\mathrm{P}(\mathrm{q})$ for a sphere vs q showing the damping of Porod oscillation with increasing polydispersity $\left(\sigma_{\text {eff }}\right)$. The oscillations disappear for $\sigma_{\text {eff }}>\sim 0.21$. The mean particle diameter $\mathrm{a}_{0}=100 \mathrm{~nm}$ for all calculations. Note the overall q^{-4} power law for $q>0.01 \mathrm{~nm}^{-1}$. The calculations terminate in the Guinier regime at low q.

Gold colloid

The spherical gold colloidal particles coated with thiols

Gold colloids
 can be dissolved in an organic solvent like toluene

Size distribution

diamond

The Stability of Silver Nanoparticles in a Model of Pulmonary Surfactant

RUTGERS
 THE STATE UNIVERSITY

pH 3 (without DPPC)
pH 3 (with DPPC)

Bey Fen Leo, Shu Chen, Yoshihiko Kyo, Karla-Luise Herpoldt, Nicholas J. Terrill, Iain E. Dunlop, David S. McPhail, Milo S. Shaffer, Stephan Schwander, Andrew Gow, Junfeng Zhang, Kian Fan Chung, Teresa D. Tetley, Alexandra E. Porter, and Mary P.
Ryan, Environ. Sci. Technol. 2013, 47, 11232-11240, DOI: 10.1021/es403377p front
 of the Huns local

Iron oxyhydroxides in the environment

Formation of ferric oxyhydroxide nanoparticles

Dissolved ferrous iron

Poorly-ordered nanoparticles

Schwertmannite $\mathrm{Fe}_{16} \mathrm{O}_{16}(\mathrm{OH})_{12}\left(\mathrm{SO}_{4}\right)_{2}$
Ferrihydrite $\mathrm{Fe}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}} \mathrm{OH}_{\mathbf{z}} \cdot \mathrm{nH}_{3} \mathrm{O}$

(Janney et al., 2000)

Pair/Size distribution function (pure) (PDF/SDF)

Pair distribution function
(Rg more accurate: based on full scattering pattern not only low q)

- Equant particle shape at beginning of reaction
- Elongated particles forming by end of reaction

Size distribution function
(degree of polydispersity)

- Monodispersed system at beginning of reaction
- Slight increase in polydispersity with time

SDS micelle (Soap!)

ASAXS example from BESSY (Berlin)

Relative composition changes in the precipitation and surrounding depletion zone.

A. Hoell et al, Scripta mater 44 (2001) 2335
diamond

What if you have a Non-Dilute system?

- Scattering (Interference) determined by spatial dimensions
- Form Factor - P(q) particle size and shape (intraparticle)
- Structure Factor - S(q) interparticle correlations function of local order and interaction potential; complex if correlation between position and
 orientation

Concentration effects $\left(\mathrm{S}_{\mathrm{q}}\right)$

Figure 1: Cross-section for several different volume fractions of PS spheres in glycerol vs. $Q R$.

Figure 2: Measured and model structure factors, $S(Q)$, (circles and dashed lines, respectively) vs. $Q R$ for PS spheres in glycerol.

Small Angle X-ray Scattering Study of a Hard-Sphere Suspension: Concentrated Polystyrene Latex Spheres in Glycerol
L. B. Lurio ${ }^{1}$, D. Lumma ${ }^{1}$, A. R. Sandy ${ }^{1}$, M. A. Borthwick ${ }^{1}$, P. Falus ${ }^{1}$, S. G. J. Mochrie ${ }^{1}$,
diamond J. F. Pelletier ${ }^{2}$, M. Sutton ${ }^{2}$, Lynne Regan ${ }^{3}$, A. Malik ${ }^{4}$ and G. B. Stephenson ${ }^{4}$

Semicrystalline Block Copolymers

- Few commercial examples
- Crystallisable end blocks
- PE-PEP-PE (hPB-hPI-hPB)
- Low crystallinity PE look-alike
- Metallocenes for multi-blocks
- Very complicated phenomenology
- Break-out \& confined crystallisation depending on morphology and T_{g} of noncrystallising material.

Spherulite
$O(10 \mu \mathrm{~m})$

Lamella
$O(10-100 \mathrm{~nm})$

Unit cell
$O(1-10 \AA)$
diamond

Bragg's law gives an estimate of interference function $d=2 \pi / q^{*}$ but how do we get the degree crystallinity and hence L?

The scattering invariant
$Q=\phi(1-\phi) \Delta \eta^{2}$
$Q=\int I(q) q^{2} \mathrm{~d} q$ with limits $0 \leq q \leq \infty$
But the SAXS pattern has data in a range of q

Scattering at Small Angle

semicrystalline lamellar stacks

SAXS Invariant

$Q=\phi(1-\phi) \Delta \eta^{2}$
ϕ and $\Delta \eta$ in a lamellar stack
do not change during crystallisation but the crystalline volume increases so
$Q=X_{s}$
the volume fraction of spherulites

Kinetics from

 time-resolved (static) scattering
WAXS

degree of crystallinity

$$
X_{c}=A_{c} /\left(A_{c}+A_{a}\right)
$$

$1500 \begin{array}{rlrl}\mathrm{t} / \mathrm{s} & 2000 \quad 3000 & 3500 \\ \text { diannond }\end{array}$

How does it work?

Added Value from the sample

Phase Transition Kinetics

Rheology

Physical Properties

Processing

Reaction Kinetics

Alignment

diamond

Block Copolymer Self Assembly

At high T thermal motion overcomes unfavourable interactions between blue and red segments

free energy = separation - stretching

- interfacial energy
diamond

Lamellar phase

Peakorder - $q_{0}, 2 q_{0}, 3 q_{0}, 4 q_{0}$

Hexagonal phase

Hex Rods $q_{0} \sqrt{ } 3 q_{0} \sqrt{ } 4 q_{0}$
diamond
S. Förster

BCC Cubic $q_{0} \sqrt{ } 2 q_{0} \sqrt{ } 3 q_{0} \sqrt{ } 4 q_{0}$

Body Centred Cubic

diamond

A real time SAXS study of oriented block copolymers during fast cyclical deformation, with potential application for prosthetic heart valves

- Study of a range of thermoplastic elastomers with all rubbery components in the block copolymers
- Time resolution of RAPID 10 ms used (although trials of $<1 \mathrm{~ms}$ also proved successful)
- Cycling used to mimic conditions for a prosthetic heat valve (10,000 cycles)

Time resolved X-ray diffraction studies of drug induced membrane degradation

a. Spacer Sample Holder \& carrier

b. Capillary Sample Holder \& carrier

_ plastic cap
a. Partly exploded cross section of high pressure cell

b. Sample closure type

c. X-ray path \& diffraction angles

Nanoparticles 20 Detector

Scattering pattern obtained from Permanent Rubine in dodecane ($30 \mathrm{wt} \%$) using short camera length with (a) zero field (b) Electric field applied ($4 \mathrm{~V}=\mathrm{mm}$) giving nematic phase.

Microfocus End Station

$\mathrm{FWHM}_{\mathrm{h}}=12.7 \mu \mathrm{~m}$
$\underset{f=y 0+a^{*}}{\substack{\text { exp }\left(-5 * \\ * \\((x-x 0) / b)^{\wedge} 2\right)}}$

$\mathrm{FWHM}_{v}=10.4 \mu \mathrm{~m}$
$\underset{f=y 0+a^{*} \exp \left(-.5^{*}((x-x 0) / b)^{\wedge} 2\right)}{ }$

[^0]
$650 \AA$ first order of dry Type I collagen

Queen Mary Nanoscale Fracture Mechanisms in Fibrolamellar University of London
 Bone in Bending and Compression

Microfocus spot obtained on I22
 with CRL (90 lenses) at 14 keV

Angelo Karunaratne, Christopher R Esapa, Jennifer Hiller, Alan Boyde, Rosie Head, JH Duncan Bassett, Nicholas J Terrill, Graham R Williams, Matthew A Brown, Peter I Croucher, Steve DM Brown, Roger D Cox, Asa H Barber, Rajesh V Thakker, and Himadri S Guptadiamond , Journal of Bone and Mineral Research, Vol. 27, $2012,876$.

diamond

University of
HUDDERSFIELD
Inspiring tomorrow's professionals

Tablet Compaction and its effect on pharmaceutical activity

Tablet Test shapes including representative indentation types

University of HUDDERSFIELD
Inspiring tomorrow's professionals

180

$$
\left\langle\cos ^{2} \phi\right\rangle=\frac{\int_{0} I(\phi) \cdot \cos ^{2} \phi \cdot \sin \phi \cdot d \phi}{\left.\int_{0}^{180} I(\phi) \cdot \sin \phi \cdot d \phi\right)}
$$

$$
H=\frac{3\left\langle\cos ^{2} \phi\right\rangle-1}{2}
$$

diamond

University of

 HuDDERSFIELD Inspiring tomorrow's professionals
Orientation around compaction site

(c)

Relative density
0.94
0.93
0.92
0.91
0.90
0.89
0.88
0.87
0.86
0.85
0.84
0.83
0.82
(a)

Data Collection via GDA

Data Reduction

Data Calibration \&Reduction in Dawn

diamond

Data Analysis

- Peaks and single parameter values are being integrated into DAWN.
- More detailed analysis is available via a range of packages that have been developed to focus on particular areas of science or experiment.
diamond

I22 - Small Angle X-ray Scattering for Diamond

Beamline:

Energy Range 3.7-20keV
$\mathrm{d} /$ Å range 1-5000 (probably $>1 \mathrm{~mm}$)

Beam size:

$70 \mu \mathrm{~m}(\mathrm{~V})-330 \mu \mathrm{~m}(\mathrm{H})$
$6 \mu \mathrm{~m} \times 7 \mu \mathrm{~m}$ with microfocusing

End Station:

Flexible Sample platform
Inline sample viewing (Microfocus)
Flux @ 1A at Sample (Measured):
6.07×10^{12}
Detectors:
Fast photon counting to $<1 \mathrm{~ms}$ in 1 - and 2D
Software:
EPICS, GDA and LabVIEW ${ }^{\text {™ }}$ (for some sample environments)
Si (111)
double crystal foxed exit
24 m

B21 - Solution SAXS for Diamond

Beamline:

Energy Range 6-23keV
d/Å range 1-2000Å
Beam size:
$250 \mu \mathrm{~m}(\mathrm{~V})-350 \mu \mathrm{~m}(\mathrm{H})$
End Station:
BioSAXS Robot for Solution Samples
Flux @ 1 Å at Sample (Measured):
8×10^{11}
Detectors:
Fast photon counting to 30 ms with $\mathrm{P}-2 \mathrm{M}$
Software:
EPICS, GDA and ISPyBB plus analysis pipelines

Si (111)
Sagittal double crystal 20 m

Small Angle Scattering (SAXS)

- O. Glatter and O. Kratky - "Small Angle X-Ray Scattering" (http://physchem.kfunigraz.ac.at/sm/Software.htm)
- A. Guinier, G. Fournet, Chapman \& Hall 1955- "Small Angle Scattering of XRays" (Good University Libraries!)
- L.A. Feigun and D.I. Svergun - "Structure Analysis by Small Angle X-Ray \& Neutron Scattering" Nruka, Moscow, 1986, English Translation Ed. G.W. Taylor, Plenum, New York, 1987
- H. Brumberger - "Modern Aspects of Small Angle Scattering", NATO ASI Series, Kluver Academic Press 1993
- P. Linder, Th Zemb - "Neutron, Xray \& Light Scattering, Introduction to an Investigative tool for Colloidal and Polymeric Systems"

Ryong-Joon Roe - "Methods of X-ray and Neutron Scattering in Polymer Science" Oxford University Press 2000

- Norbert Stribeck - "X-ray Scattering of Soft Matter" Springer 2007
- Wilfred Gille - "Particle and Particle Systems Characterisation" CRC Press 2014

[^0]: - Sorted uniquex x vs dydd
 x column s y o olumn

