CARDIFF UNIVERSITY PRIFYSCOL CAFRDYB

Analysis of Small-Angle Scattering data from Colloidal Systems

Alison Paul

School of Chemistry, Cardiff University

Julian Eastoe

Tim Wess

CARDIFF UNIVERSITY PRIFYSCOL CAERDYB

LOQ Thu 8-MAY-2003 15:16 SAMPLE: 87752 EMPTY CAN: 87704 used /FLAT

Wav 2.20> 10.00 Phi -90.0> 90.0 Rad 38.0> 419.0 Scaled* 0.975

0 0 0

0

3 (F12.5,2E16.6)

0.00700 1.298338E+00 2.832919E-01 0.01500 5.380163E-01 2.699525E-02 0.01700 5.929618E-01 2.190137E-02 0.01900 6.539880E-01 1.881858E-02 0.02100 7.608917E-01 1.753074E-02 0.02300 8.432806E-01 1.670633E-02 0.02500 9.049114E-01 1.589828E-02 0.02700 9.514409E-01 1.538287E-02 1.467021E-02 0.03100 9.125873E-01 1.392836E-02 0.03300 8.765299E-01 1.326172E-02 0.03500 8.499228E-01 1.272917E-02 0.03700 8.080100E-01 1.206244E-02 0.03900 7.885970E-01 1.161463E-02 0.04100 7.665921E-01 1.119541E-02 0.04300 7.416576E-01 1.081008E-02 0.01100 5.462403E-01 5.673788E-02 0.01300 5.679009E-01 3.706261E-02 0.00900 6.851087E-01 1.003761E-01 0.02900 9.493540E-01

0.04500 7.134403E-01 1.042103E-02

CARDIFF UNIVERSITY PRIFYSGOL CAERDYB

Approximations – Q dependence

$I(Q) = A V_p N_p^2 (\Delta \rho)^2 P(Q) S(Q) + B_{inc}$

I(Q) α **P(Q)**

structure factor

form factor

 $Q^0 = spheres$

 $Q^{-1} = rods$

Q⁻² = linear Gaussian chain

Q⁻³ = fractal surface

Q⁻⁴ = smooth interface

CARDIFF UNIVERSITY PRIFYSCOL CAERDYB CAERDYB

I(Q) = $A V_p N_p^2 (\Delta p)^2 P(Q) S(Q)$

								7	1	-4			9.0- 7.0- 8.0- 6.0-	
vindow	Plot window			/									20 -19 -18 -17 -18 -15 -14 -13 -12 -1.1 -10 log(0 (Å ⁻¹))	- Catt ake Catt and Catt ake and
K Fish plot v	AXIS SETIES	0.25	0.00	0; 0; 0; 0; 0; 0; 0;	0 0.75	a) 	1 -1.25	700 700	0 -1.75	-2.00	-2.25	-2.50		
			æ	39e-08	0e+0	35e-09	0e+0	0e+0	6+0	[우]	- 1			
			Calc shi	7.4834	00000'0	1.02858	0.00000	0.0000	0.00000	0.00000e		ie-01		
			Fit Calc shi	7,4834	00000.0	1.0285	0.00000	0.00000	0.00000	0.00000e		var=5.1385e-01	Ē	
			Std deviation Fit Calc shi	1.298176e-02 V 7.4834		9.145628e-04 😺	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00		λ=0.0e+00 var=5.1385e-01	Run	
	ences Help		Value Std deviation Fit Calc shi	1.902090e+00 1.298176e-02 2 7.48346	1.460000e+00 0.000000e+00 0.00000	9.901127e-03 9.145628e-04 👿 1.02858		0.000000e+00 0.00000e+00 0 0.00000 0.000000e+00 0.000000e+00 0 0.00000	2.100000e+01 0.00000e+00	1.000000e+00 0.000000e+00 0.00000e		XDWE=2.2051e-11 λ=0.0e+00 var=5.1385e-01	Run	
	Plot Preferences Help	del Fitting	Label Value Std deviation Fit Calc shi	Const 1.902090e+00 1.298176e-02 2 7.48346	reg 0.00000e+00 0.000000e+00 0.000000e+00 0.00000	BKG A 9.901127e-03 9.145628e-04 🔽 1.02858	B*Q 0.000006+00 0.000006+00 0.00000	C*Q**2 0.000000e+00 0.000000e+00 0.00000 SMEAR 0.000000e+00 0.000000e+00 0.00000	NSIMP 2.100000e+01 0.000000e+00	SCALE 1.000000e+00 0.000000e+00		\1425e+01 XDWE=2.2051e-11 λ=0.0e+00 var=5.1385e-01	Run	

iterative least squares fit

parameterised models for P(Q), S(Q) etc

micelles and microemulsions of metallosurfactants distinguish between oblate and prolate micelles

estimate shell thickness and thereby calculate head-group hydration

→ shell thickness

confirm location of metal ions

→ alcohol content of shell

Constraining fits

 $L_{c} = 0.125 + 0.1265 n_{c}$

CARDIFF UNIVERSITY PRIFYSCOL CAERDYB

Constraining fits

SDS / C12E4

Figure 1. Intensity of scattered radiation as a function of wavevector, Q (linear-linear representation), for hinary surfactant micelles comprising SDS and $C_{12}E_4 \text{ in } D_2\text{O}$. (\blacksquare) $0_{\text{SDS}} = 1.0 (25 \text{ mM})$; (\bigcirc) $0_{\text{SDS}} = 0.95$ (50 mM); (\bigcirc) $0_{\text{SDS}} = 0.90$ (50 mM); (\bigcirc) $0_{\text{SDS}} = 0.85$ (50 mM); (\bigtriangledown) $0_{\text{SDS}} = 0.80$ (50 mM); (\bigcirc) $0_{\text{SDS}} = 0.80$ (50 mM). The solid lines drawn through the data points correspond to the fits to the constrained model as described in the test.

TRFQ, EPR and eNMR constrained fits

calculate P(Q)

TABLE 1: Sodium Dodecyl Sulfate SDS/Tetra(ethylene oxide) Dodecyl Ether SANS Analysis, Constrained Core-Shell Fit^a

o 00,81a ⁺ ±0.05	n/a	0.27	0.28	0.29	0.29	nottenenne
axial rati ± 0.1	1.2	1.5	1.6	1.6(5)	1.7	ed from the
R_{core}/\dot{A} ± 0.1	16.7	16.7	16.7	16.7	16.7	conctrain
$\check{\delta}_{\text{shell}}/\AA$ ± 0.1	3.6	3.7	3.8	3.9	4.2	lle are vite
iggregation no. ± 3	65	85	88	16	95	, leive hue &
A SDS	00.1	0.95	06.0	0.85	0.80	a 8

vshill, Acore, and axial fatto are all collisitatine it off the aggregation fitmber.

Decrease in ϕ_{H2O} as $X_{nonionic}$ increases

Replacing water with ethyene glycol in shell region of micelle

Griffiths et al, J Phys Chem B, 2005

$I(Q) = \left(\phi V_{\rho} (\Delta \rho)^2 \right) P(Q, R) S(Q) + B_{inc}$

Calculate how much scattering we expect based on the fit parameters

take into account the appropriate contrast and should be within 10% of fitted scale e.g. calculate Vp based on P(Q) parameters and multiply by concentration

scale factor

CARDIFF UNIVERSITY PRIFYSGOL CAERDYB

Summary & Limitations

Approximations often apply • only under certain conditions

e.g. - dilute non-interacting systems, in a theta solvent

only over certain Q ranges

e.g. – QRg <1 (Guinier) or Q>5.Rg⁻¹ (Kratky)

only after accurate background subtraction

Combination of methods is usually required to obtain a robust fit

scale factors constraints

physically reasonable representation of the data

The SANS Toolbox B Hammouda

The FISH manual R K Heenan