X-RAY MIRROR POINT SPREAD FUNCIION COMPUTATION IMPACI OF DIEERRENT SPATIAL WAVEIENGTIS

Lorenzo Ramond SDaniele Spiga

Universitá degli Studi dell'Insubria Osservatorio Astronomico di Brera

PSF WITH FRESNEL DIFFRACTION

* PSF computation from suiface metrology (notonly 1 EV)
* At anyenergy
- Withoutany separation between figure erors and microrotigness

FOCAL PLANE

PSF WITH FRESNEL DIFFRACTION

- PSF computation fromisuiface metrology (not ony L L W)
- At any energy
- Without any separation between figure erors: and microroughness

SCATTERING: SINUSOIDAL GRATING

PSF parabola plus sinusoidal grating using Fresnel diffraction

Focal plane (arcsec)
$\lambda=100 \mathrm{~A}$

Focal plane (arcsec)

$$
\lambda \text { iA vs ray tracing }
$$

. SINUSOIDAL GRATING:
$I=A \sin (2 \pi X / \Phi) \quad$ where $A=0.1 \mu \mathrm{~m} \quad \Phi=1 \mathrm{~cm}$

- PREDICTED PEAK POSITIONS:

$$
\Phi=N \lambda\left(\cos \theta_{\mathrm{i}}-\cos \theta_{\mathrm{s}}\right)
$$

- PREDICTED PEAK HEIGHTS:
$I=J_{N}{ }^{2}\left[(2 \pi A \lambda)\left(\sin \theta_{i}+\sin \theta_{s}\right)\right]$

SCATTERING: SINUSOIDAL GRATING

$\lambda=30 \mathrm{~A}$
λ. 1 A Vs ray tracing

Focal plane (arcsec)
$\lambda=100 \mathrm{~A}$

- SINUSOIDAL GRATING:
$I=A \sin (2 \pi X / \Phi) \quad$ where $A=0.1 \mu \mathrm{~m} \quad \Phi=1 \mathrm{~cm}$
- PREDICTED PEAK POSITIONS:

$$
\Phi=N \lambda\left(\cos \theta_{\mathrm{i}}-\cos \theta_{\mathrm{s}}\right)
$$

- PREDICTED PEAK HEIGHTS:
$I=J_{N}{ }^{2}\left[(2 \pi A / \lambda)\left(\sin \theta_{i}+\sin \theta_{s}\right)\right]$

PSF COMPUTATION FOR A TYPICAL MIRROR

 PROFILE

$\mathrm{PSD}=\mathrm{K}_{n} / \mathrm{f}^{\mathrm{n}}$

PSF COMPUTATION FOR A TYPICAL MIRROR PROFILE

HEW VARIATION WITH ENERGY comparison with analytical method (Spiga 2007.)

Perfect shape parabola plüs.PSD.Kn $=2.2$ n $=1: 8$

Parabola plus geometrical errors and $\operatorname{PSDK}=2.2 \mathrm{n}=1.8$

Perfect shape: parabola plus PSD Kn=0.5

Parabola plus geometrical errors and PSD Kn=0.5 $n=2.2$

HEW VARIATION WITH ENERGY comparison with analytical method (Spiga: 2007)

Parabola plus geometrical errors and PSD Kn=2.2 $n=1.8$

Parabola plus geometrical errors and PSD Kn=0.5 $n=2.2$

SLUMPED GLASSES PSF ANALYSIS SURFACE METROLOGY
 G1 glass
 G2 glass

6SPROFIESMEASURED WTH 3DPROELLOMETER 5:200:min

PSD G1 glass

CPSD:AGHEVEDFROM AFM OPTICAE INTEREEROMETERAND X-RAY DIFFRACTOMETER MEASURE
1 mm 0.1 um

PSD G2 glass

SLUMPED GLASSES PSF ANALYSIS SURFACE METROLOGY

G1 glass

G2 glass

SMEASU PROELCO

PSD G1 glass

GPSDPACHEVEDFROM AFM: OPTICAL
INTERFEROMETERAND X-RAY DIFFRACTOMETER MEASURE
$1 \mathrm{~mm}=0.1 \mathrm{um}$

SLUMPED GLASSES PSF ANALYSIS PSF COMPUTATION

SLUMPED GLASSES PSF ANALYSIS PSF COMPUTATION

PSF G2 glass at 1.5 keV

Focal plane (arcsec)

PSF G2 glass at 5 keV

PSF G2 glass at 3 keV

PSF G2 glass at 8 keV

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY

Behavior of HEW with Energy of G1 G2 mirrors:
comparison between the analytical method and the Fresnel diffraction simulations.

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY

Behavior of HEW with Energy of G1 G2 mirrors:
comparison between the analytical method and the Fresnel diffraction simulations.

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY

 Analysis of different spatial wavelenctur rages inoact on PSF degradation

SLUMPED GLASSES PSF ANA YSIS HEW BEHAVIOR WITH ENERGY

Analysis of different spata wavelenothrages hopact on PSE dearadation

SLUMPED GLASSES PSF ANA YSIS HEW BEHAVIOR WITH ENERGY

Analysis of different spatar wave enoth ranges mpact on PSE decradatió

This analysis should allow us to understand at which spatia wavelength scale an active X-ray optic system Should operate to obtain the best efficiency

DOUBLE REFLECTION PSF COMPUTATION: WOLTER-I CONFIGURATION

Woiter configuration

- reduction of the coma aberration
- to shorten the focal length

DOUBLE REFLECTION PSF COMPUTATION: WOLTER-I CONFIGURATION

PSF Wolter-I and parabola comparison at 0.4 keV

PSF Wolter-I and parabola comparison at 0.4 keV

DOUBLE REFLECTION PSF COMPUTATION: WOLTER-I CONFIGURATION

PSF Wolter-I at 1 keV

PSF Wolter-I at 1 keV

CONCLUSIONS

* We have applied a self-consistent method to obtain the PSFfrom the X-ray mirror metrology data, at ANY energy without setting any: geometrical optics/roughness boundary
* The method is consistent with the ray tracig (atenergies, where a posterior, the geometrical optics can be appled) and with the behavior of the HEW increase obtained from the X ray scattering analytical approach
- The separate contributions to the HE W from the geometrical profile and from the microroughess, when summed, are cose to the total HEW (TBC)
- This approach allows to assess the impact of different spatial wavelengths on the miror PS e and to understand at which spatial scale anactive X ray optic system should operate for the best efficiency, depending on λ
- This method is easily extendable to the double reflection case, widespread in X-ray telescopes.

THANKS

