X-RAY MIRROR POINT SPREAD FUNCTION COMPUTATION: IMPACT OF DIFFERENT SPATIAL WAVELENGTHS

Lorenzo Raimondi & Daniele Spiga

Università degli Studi dell'Insubria Osservatorio Astronomico di Brera

PSF WITH FRESNEL DIFFRACTION

- PSF computation from surface metrology (not only HEW)
- At any energy
- Without any separation between figure errors and microroughness

PSF WITH FRESNEL DIFFRACTION

- PSF computation from surface metrology (not only HEW)
- At any energy
- Without any separation between figure errors and microroughness

SCATTERING: SINUSOIDAL GRATING

SCATTERING: SINUSOIDAL GRATING

 $PSD = K_n/f^n$

HEW VARIATION WITH ENERGY comparison with analytical method (Spiga 2007)

Perfect shape parabola plus PSD Kn=2.2

Perfect shape parabola plus PSD Kn=0.5 n=2.2

HEW VARIATION WITH ENERGY comparison with analytical method (Spiga 2007)

SLUMPED GLASSES PSF ANALYSIS SURFACE METROLOGY G1 glass G2 glass

PROFILES MEASURED
WITH 3D PROFILOMETER
5-200 mm

PSD ACHIEVED FROM AFM, OPTICAL INTERFEROMETER AND X-RAY DIFFRACTOMETER MEASURE 1 mm - 0.1 um

SLUMPED GLASSES PSF ANALYSIS SURFACE METROLOGY G1 glass G2 glass

PSD ACHIEVED FROM AFM, OPTICAL INTERFEROMETER AND X-RAY DIFFRACTOMETER MEASURE 1 mm - 0.1 um

SLUMPED GLASSES PSF ANALYSIS PSF COMPUTATION

SLUMPED GLASSES PSF ANALYSIS PSF COMPUTATION

Tuesday, April 26, 2011

G2

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY

Behavior of HEW with Energy of G1-G2 mirrors:

comparison between the analytical method and the Fresnel diffraction simulations.

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY

Behavior of HEW with Energy of G1-G2 mirrors:

comparison between the analytical method and the Fresnel diffraction simulations.

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY Analysis of different spatial wavelength ranges impact on PSF degradation

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY Analysis of different spatial wavelength ranges impact

on PSF dearadation

SLUMPED GLASSES PSF ANALYSIS HEW BEHAVIOR WITH ENERGY Analysis of different spatial wavelength ranges impact

This analysis should allow us to understand at which spatial wavelength scale an active X-ray optic system should operate to obtain the best efficiency

DOUBLE REFLECTION PSF COMPUTATION: WOLTER-I CONFIGURATION

Wolter-I configuration

- reduction of the coma aberration
- to shorten the focal length

DOUBLE REFLECTION PSF COMPUTATION: WOLTER-I CONFIGURATION

DOUBLE REFLECTION PSF COMPUTATION: WOLTER-I CONFIGURATION

CONCLUSIONS

- We have applied a self-consistent method to obtain the PSF from the X-ray mirror metrology data, at ANY energy, without setting any geometrical optics/roughness boundary
 - The method is consistent with the ray-tracing (at energies, where a posteriori, the geometrical optics can be applied) and with the behavior of the HEW increase obtained from the X-ray scattering analytical approach
 - The separate contributions to the HEW from the geometrical profile and from the microroughness, when summed, are close to the total HEW (TBC)
 - This approach allows to assess the impact of different spatial wavelengths on the mirror PSF and to understand at which spatial scale an active X-ray optic system should operate for the best efficiency, depending on λ.
 - This method is easily extendable to the double reflection case, widespread in X-ray telescopes.

THANKS