

In situ Fracture Studies in Reactor Materials

Paul Mummery

Nuclear Graphite Research Group

Dept of Mechanical, Aerospace and Civil Engineering,

University of Manchester

Outline

- Why the need for crack growth studies in materials for reactors in virgin and irradiated state
- Imaging facilities
 - What is tomography?
- Crack growth in virgin and irradiated graphite
 - In situ tomographic studies
 - Toughness determination
- Crack growth in toxic materials
- Conclusions
- Acknowledgements

Why need for fracture studies?

- Mechanical behaviour and failure mechanisms are affected by irradiation
- Design rules, structural integrity calculations, and safety cases are often based on extrapolations from properties of virgin material
- It is necessary to assess the reliability of these extrapolation by (limited) experimentation
 - Doing fracture tests on large irradiated samples is a challenge...
 - Establishing procedures for safe transport, handling, testing, disposal of radioactive specimens is key

Property changes with irradiation

Prediction of behaviour in full scale components challenging

Why need for fracture studies?

- Mechanical behaviour and failure mechanisms are affected by irradiation
- Design rules, structural integrity calculations, and safety cases are often based on extrapolations from properties of virgin material
- It is necessary to assess the reliability of these extrapolation by (limited) experimentation
 - Doing fracture tests on large irradiated samples is a challenge...
 - Establishing procedures for safe transport, handling, testing, disposal of radioactive specimens is key

Is it safe to continue operation?

AGR core is a complex, interconnected structure of large faceted bricks containing sharp corners

How do cracks grow? Do they impair critically safe operation? Can we validate predictions of numerical models?

Why need for fracture studies?

- Mechanical behaviour and failure mechanisms are affected by irradiation
- Design rules, structural integrity calculations, and safety cases are often based on extrapolations from properties of virgin material
- It is necessary to assess the reliability of these extrapolations by (limited) experimentation
 - Doing fracture tests on large irradiated samples is a challenge...
 - Establishing procedures for safe transport, handling, testing, disposal of radioactive specimens is key

X-Ray Tomography

What is X-ray Tomography?

- Transmitted intensity from a series of line projections of a cross section of the object at different angular orientations reconstructed to give 3-D map of x-ray absorption
- Advantages
 - Non-intrusive
 - Good spatial resolution (currently \approx 0.1 μ m in lab; \approx 5 nm at synchrotron sources)
 - Very sensitive to composition and density
 - Independent of specimen geometry
 - Can decouple μ and x

What do you get?

How can it be used?

- Non-destructive 3D determination of structure
- In situ development of specimen (component, material) during environmental change
 - Loading, thermal, irradiation
 - Strain mapping through image correlation
- Basis for numerical model/digital engineering
 - Predictions based on actual structure
 - Solid mechanics; fluid dynamics; thermal transport

CRACK GROWTH IN VIRGIN AND IRRADIATED GRAPHITE USING SYNCHROTRON X-RAYS IN A NOVEL GEOMETRY

Test Geometry

- Easy to machine geometry
- Inherently stable crack propagation enables tomography
- Measurement of toughness properties and mechanisms

$$K_{IC} = \left(\frac{a_{\text{top}} + a_{\text{bottom}}}{2a}\right)^{1/2} \left\{\frac{1.1}{(1 + \frac{a_{\text{top}} + a_{\text{bottom}}}{2a})^{3.3}}\right\} \sigma \sqrt{\pi a}$$

Experimental Details

- Specimen geometry: 18 x 8 x 3 mm plates with a 2.8 mm hole in the centre.
- Loading condition: Uniaxial compression

Fig. 4: The initiation and progressive growth of a crack around the hole in a plate of graphite in *in situ* SEM study

Double-Walled Containment Cell

Designed in partnership with H&S group at DLS World first in situ tomographic study of crack growth in irradiated graphite

Experimental Setup: 113 Diamond Light Source

Experimental Setup: 113 Diamond Light Source

Experimental Details

- Specimen geometry: 18 x 8 x 3 mm plates with a 2.8 mm hole in the Centre.
- H = 18mm, B = 8mm, W = 3mm, d = 2.8mm
- Loading condition: Uniaxial compression
- Materials:
 - Virgin Gilsocarbon (HPB)
 - Neutron Irradiated Gilsocarbon from HPB installed set
 - EDND 19.7 x 10²⁰ n cm⁻²; 4% weight loss
 - Machined from wings of WoF specimens
 - Measured bend strength 34.4MPa

Mechanical behaviour

Irradiated Gilsocarbon

Crack geometries

Virgin crack path

The University of Manchest radiated crack path

Crack mouth opening

On unloading, the virgin material displays significant residual opening, consistent with substantial plastic deformation. Conversely, the irradiated material recovers all deformation, consistent with elastic loading. This is a key indicator of reduced toughness of irradiated material

Toughness by J-integral

Pre-load

780 N

Crack paths and displacement fields

Virgin

875 N

872 N

827 N

Irradiated

SIFs and fracture energy

Relatively straight crack front implies analysis robust

Both SIF and strain energy release rate reduced significantly on irradiation

Comparison of graphite and beryllium

Stress/strain behaviour

Crack paths and profiles

Fracture energy

Crack profiles and surface areas

Effects of irradiation and fracture mechanism

New Containment Cell

Aluminium

Each containment layer is gas leak proof

84% of absorption @ 20 keV

Structural integrity remains at > 5 kN

Simpler to use but no ability for infra red heating

Simple manufacture so can be adapted to meet specimen and radiological needs

Beryllium: ITER first wall, toxic and lack of contrast

Contrast enhancement:

- Natural contrast : porosity, inclusions -
- > weak, work in progress
- Additional contrast : W powder

Surface displacement field (DIC):

Summary

- First in situ tomographic crack growth of irradiated graphite and beryllium
 - Compare effects of irradiation on propagation mechanisms
 - Measure strength and fracture energy
- Establishment of User Facility at DLS
 - Supports Active Handling Facility
 - Load frames and containment cells for radioactive and toxic materials
 - Experimental officers and Research Fellows

Acknowledgements

The authors would like to acknowledge the contributions of other University of Manchester staff and project collaborators, as well as thank our project sponsors:

- UoM: Matthew Roy, William Bodel, Joshua Taylor, Tristan Lowe, Neil Bourne.
- Diamond: Andrew Bodey, Shashidhara Marathe, David Eastwood, Kaz Wanelik, Christoph Rau
- NNL: Nassia Tzelpi, Jon Bradley, Sam Wilkinson, Matthew Jordan
- EDF: Jonathan Wright, Mark Davies, Bruce Davies, Alan Steer and Jim Reed
- InnovateUK

