Design, Development and Manufacturing Experiences for Sirius Button BPM

Henrique de Oliveira Caiafa Duarte - Beam Diagnostics Group On behalf of Materials, Vacuum and Mechanical Projects Group

Brazilian Synchrotron Light Laboratory

- Sirius Overview
- Developments
 - Electromagnetic Analysis
 - Button/ceramics/housing brazing
 - Housing-to-body insulation (flange or welding)
 - Wake Heating Analysis
- Quality Control
- Production

- Sirius Overview
- Developments
 - Electromagnetic Analysis
 - Button/ceramics/housing brazing
 - Housing-to-body insulation (flange or welding)
 - Wake Heating Analysis
- Quality Control
- Production

Sirius Main Parameters

150 MeV LINAC commissioned in May 2018

Booster cavity in place and e⁻beam at 10⁻⁸ mbar

Installation

Installation

- Sirius Overview
- Developments
 - Electromagnetic Analysis
 - Button/ceramics/housing brazing
 - Housing-to-body insulation (flange or welding)
 - Wake Heating Analysis
- Quality Control
- Production

From electromagnetic (wakefield) simulations, wakelosses are calculated

DIAMOND BPM Workshop

NPEM

Housing-to-body insulation

- Unthreaded housing;
- Requires housing and body with same CTE (otherwise leaks during baking);
- Risk of misaligning the outer SMA conector.

- Proposed solution for chamfer-type flange "problems";
- Flange (copper-colored piece) bends for stronger tighteninghs.

- Fastest assembly;
- Materials choice restriction for proper welding;
- Failure in welding compromises the entire BPM.

Project Evolution and Alternatives

CNPEΜ

With geometries and materials defined,

WE CAN NOW ANALYZE THE WAKE HEATING EFFECTS

ANALYSIS AND COUNTERMEASURES OF WAKEFIELD HEAT LOSSES FOR SIRIUS

- with and without copper pipe terminations - and theory.

Figure 2: Effect of RW BC on BPM Button HOM.

GdfidL impedance BCs (separate pieces) + ANSYS

Mo button, Alumina ceramics, Ti₆Al₄V BPM housing and body, SS bellows

BPM Stand + Full Prototype

DIAMOND BPM Workshop

BPM Stand + Full Prototype

Stand: cast steel batch

But some tests were needed before safely arriving here

BPM+stand

Stand: inspection measurement after precision machining

May 2nd, 2019

DIAMOND BPM Workshop

Assembly test setup

100 10 10

- Sirius Overview
- Developments
 - Electromagnetic Analysis
 - Button/ceramics/housing brazing
 - Housing-to-body insulation (flange or welding)
 - Wake Heating Analysis
- Quality Control
- Production

HOW STRONG ARE THE FEEDTHROUGHS?

Crash Test Setup

May 2nd, 2019

Load

No button has leaked

Crash test: axial load

All 15 (except one) leaked right before crash

Ok, the feedthroughs seem strong...

BUT WHAT LOAD THEY WILL COMMONLY FACE?

Measuring Loads from SMA Connections

Test device mechanical design

Force on separate feedthrough w/ leak detection

Leak detector attached here

Force on welded feedthrough w/o leak detection

Lot of mechanics/vacuum quality control by now...

WHAT ABOUT CAPACITANTE AND BPM ELECTRICAL CENTER?

Button offset & gap tolerances

СИРЕШ

150 nm relative vertical offset: **300 nm BPM electrical center deviation** (from studies of electrical deviation). Since Sirius requires **sub-hundred nanometer stability**, sorting the buttons by similar gap size (or, close capacitance values) is required

Buton Capacitance Measurement

Buton Capacitance Measurement

• Complementary housing seat and button offset – so the buttons face the same distante from BPM center .

- Sirius Overview
- Developments
 - Electromagnetic Analysis
 - Button/ceramics/housing brazing
 - Housing-to-body insulation (flange or welding)
 - Wake Heating Analysis
- Quality Control
- Production

 Most of the microcracked ceramics (microscope inspection) were still leak tight, but discarded anyway;

- Most of the microcracked ceramics (microscope inspection) were still leak tight, but discarded anyway;
- Step-shaped button BPM may be the best costbenefit approach. We have opted for Bell-Shaped design to achieve the best we could;

- Most of the microcracked ceramics (microscope inspection) were still leak tight, but discarded anyway;
- Step-shaped button BPM may be the best costbenefit approach. We have opted for Bell-Shaped design to achieve the best we could;
- Several feedthroughs were found with intermediate shunt resistance – high voltage burn worked in most cases;

- Most of the microcracked ceramics (microscope inspection) were still leak tight, but discarded anyway;
- Step-shaped button BPM may be the best costbenefit approach. We have opted for Bell-Shaped design to achieve the best we could;
- Several feedthroughs were found with intermediate shunt resistance – high voltage burn worked in most cases;
- We are open for colaborations 😳

.....

. ...

