Dark field, microscopic and tomographic implementations of edgeillumination phase contrast imaging

M. Endrizzi¹, P.C. Diemoz^{1,2}, C.K. Hagen¹, F.A. Vittoria^{1,2}, T.P. Millard¹, D. Basta¹, A. Zamir¹, G. Kallon¹, U. Wagner³, C. Rau³, I.K. Robinson^{2,4} and A. Olivo^{1,2}

¹Dept. of Medical Physics and Bioengineering, UCL, WC1E 6BT London, United Kingdom ²Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot, United Kingdom ³Diamond Light Source, Harwell Oxford Campus, OX11 0DE Didcot, United Kingdom ⁴London Centre for Nanotechnology, WC1H 0AH London, United Kingdom

Edge-illumination and coded-aperture are X-ray phase-contrast imaging techniques capable of quantitative retrieval of absorption, phase, and ultra-small-angle X-ray scattering. They require two partially absorbing masks, with relatively large pitches, matched with the detector such that a one-to-one relationship exists between apertures and pixels. We will focus the discussion on the so-called dark-field imaging which produces representations of the sample structure at sub-pixel scale lengths, providing complementary information with respect to absorption and phase. High resolution implementations of these methods can be realized by using a highly demagnified pre-sample mask. Finally, the extension of those imaging methods from planar to three-dimensional will be presented.