

Laboratory Small-Angle X-ray scattering Instrument: State-of-the-Art and Applications

Oleksandr Mykhaylyk

Soft Matter AnalyticaL Laboratory Department of Chemistry, The University of Sheffield, UK

By no means a complete outline!

Diamond Light Source (X-rays)

ISIS Spallation Source (neutrons)

Laboratory SAXS Xenocs Xeuss + Excillum MetalJet Bruker Nanostar

Evolution of SAXS instrument components

Monochromator **Collimating slits** X-ray source Detector **1990s Graphite crystal** X-ray films Solid anode Lead pinholes 2000s Solid (rotating) anode Lead pinholes **Gobel mirror Multi-wire gas detector** DECTRIS Current electrons 1 state of DECTRIS play X-rays Montel optics or 3D multi-Scatterless slits comprised of Liquid metal anode layered mirror **Pixel detector** motorized single crystal blades

Performance of some components

X-ray source

Detector

Outline of our laboratory SAXS instrument

MetalJet Liquid Gallium X-ray source 3D multilayered X-ray mirror Two sets of motorized scatterless slits Two Dectris detectors: Pilatus1M (SAXS) and Pilatus 100K (WAXS) Sample-to-detector distance 6.4 m Resolution: 0.001 Å⁻¹ (~ 6000 Å) Simultaneous SAXS/WAXS GiSAXS/GiWAXS X-ray reflectometry

MetalJet Liquid Gallium X-ray source 3D multilayered X-ray mirror Two sets of motorized scatterless slits Two Dectris detectors: Pilatus1M (SAXS) and Pilatus 100K (WAXS) Sample-to-detector distance 6.4 m Resolution: 0.001 Å⁻¹ (~ 6000 Å) Simultaneous SAXS/WAXS GiSAXS/GiWAXS X-ray reflectometry Thus, modern laboratory X-ray scattering instrument can be used pretty much for all standard X-ray scattering techniques SAXS WAXS GiSAXS GiSAXS GiWAXS X-ray reflectometry

1wt% (0.8 vol%) P2VP (C₇H₇N)_n spherical particles in water, R = 1030 Å, σ_R = 35 Å, $\Delta\rho^2$ = 1.335×10²⁰ cm⁻⁴

P2VP (C₇H₇N)_n spherical particles in water, R = 2700 Å, σ_R = 35 Å, $\Delta \rho^2$ = 1.335×10²⁰ cm⁻⁴

Particle size 540 nm

Thus, in terms of spatial resolution a modern laboratory X-ray scattering instrument can be used for analysing structural formations/morphologies/objects as large as 0.5 micron reaching the lower limit of resolution of standard optical microscopes.

P2VP (C₇H₇N)_n spherical particles in water, R = 2700 Å, σ_R = 35 Å, $\Delta\rho^2$ = 1.335×10²⁰ cm⁻⁴

Time Resolution of the Instrument

1wt% (0.49 vol%) Silica spherical particles in water,

R = 97 Å,
$$\sigma_{\rm R}$$
 = 22 Å, $\Delta \rho^2$ = 65.9×10²⁰ cm⁻⁴

Exp. conditions	Vol%	R, Å	σ _R , Å
As prepared	0.49	-	-
SAXS, 1s exposure	0.47	97.6	21.2
SAXS, 10 exposure	0.47	97.2	21.6
SAXS, 60s exposure	0.50	97.2	21.9

Thus, in terms of time resolution a modern laboratory X-ray scattering instrument can be used for analysing structural

formations/morphologies/objects at a time resolution as low as one second enabling to perform standard (not highly demanding) time-resolved measurements of structural formations/transformations.

1wt% (0.49 vol%) Silica spherical particles in water,

R = 97 Å, $\sigma_{\rm R}$ = 22 Å, $\Delta \rho^2$ = 65.9×10²⁰ cm⁻⁴

Exp. conditions	Vol%	R, Å	σ _R , Å
As prepared	0.49	-	-
SAXS, 1s exposure	0.47	97.6	21.2
SAXS, 10 exposure	0.47	97.2	21.6
SAXS, 60s exposure	0.50	97.2	21.9

SAXS of 1.0% w/w PSMA₁₃-PBzMA₆₅ diblock copolymer worm-like micelles in mineral oil

65

Laboratory SAXS instrument XeussMJ, L=1.9 m, 600 s acquisition

Branched worm-like micelles at RT

Thus, a modern laboratory X-ray scattering instrument can be successfully used for analysing structural formations/morphologies/objects in a combination with synchrotron measurements which can save expensive synchrotron time for advanced measurements and improve quality of collected data.

Block Copolymer Self-Assembly via Polymerization-Induced Self-Assembly (PISA)

In practice, particle morphology also depends on copolymer concentration

N. J. Warren & S. P. Armes, J. Am. Chem. Soc., **2014**, 136, 10174 M. J. Derry, L. A. Fielding & S. P. Armes, Prog. Polym. Sci., **2016**, 12, 1 S. L. Canning, G. N. Smith & S. P. Armes, Macromolecules, **2016**, 49, 1985

Time-resolved SAXS

RAFT polymerization and PISA of PGMA₄₈-PBzMA₃₀₀ in water Reaction conditions: 10% w/w, reaction temperature 70 °C ACVA, H₂O 10% w/w, 70 °C water inlet Details of the synthesis: 1000 **Reaction cell** V. J. Cunningham et al, spherical micelles subaseal Macromolecules, 2014, 100 47, 5613-5623 **SAXS Experiment:** water bath XeussMJ, L=4 m, polymerisation S=0.5×0.5 mm², frame Details of SAXS analysis: reaction 10 Intensity [cm⁻¹] M. J. Derry et al, rate: 1fr/10min small copolymers X-ray beam Chemical Science, 2016, 7, Duration: 2 h 5078 magnetic follower 0.1 stabilizer polymers support plate 0.01 0.001 s 9 0.01 q [Å⁻¹] 10 10 10 Intensity [Arbitrary] 10 10⁻¹ 10⁻² **Reaction cell mounted on Xeuss** 10 , Ţ, 0.01 0.1

SAS school @ Diamond 2019, UK

q[Å⁻¹]

Rheo-SAXS/WAXS

- 15 wt% aqueous dispersion of thermoresponsive block-copolymers
- Sample-to-detector distance 3.8 m
- Exposure time 60 s
- Continuous shear

taken from A. Hexemer & P. Muller-Buschbaum, IUCrJ (2015), 2, p106–125

CH₃NH₃PbI_{3-x}Cl_x Perovskite photovoltaic device manufacturing

GISAXS

Organic solar cells

P3HT – conjugated polymer – edge on orientation

<u>Conditions for the data collection</u>: exposure time 10 min; film thickness < 200 nm two positions of the detector were used in order to erase the detector dead stripes from 2D scattering patterns

Laboratory X-ray scattering instruments and, in particular, **SAXS instruments** have undergone significant development for the last decade and become **powerful devices available for researchers with 24/7 access all year round**.

Due to high X-ray flux and improved collimation it is possible to reach both size **resolution** of the scattering objects **up to 0.5 microns** and **time resolution of a few seconds**.

The recent developments of X-ray sources, detectors and X-ray optics opened up **new opportunities for in-house experiments on structural characterisation of nano-scaled morphologies** formed by inorganic and organic materials especially biomaterials, gels, colloids, nanoparticles and polymers.

Design of the modern X-ray scattering instruments enables **simultaneous SAXS/WAXS measurements in-situ using different sample environments** such as heating stages, shear cells and reactor cells.

Sheffield University users of the SMALL

From Physics Department

Andrew Parnell Benjamin Freestone Mark Geoghegan Richard Jones David Lidzey Fabio Pontecchiani

From Chemistry Department

Thomas Neal Matthew Derry Cate O'Brien Steve Armes Sarah Bayard Andrew Campbell Thomas Franklin Fiona Hutton Anthony Ryan

European Research Council