The molecular basis of meiotic chromosome synapsis by SYCP1

Owen Davies

Institute for Cell and Molecular Biosciences
University of Newcastle, UK

Meiotic cell division

Establishment of homology pairs during mammalian meiosis

Establishment of homology pairs during mammalian meiosis

Establishment of homology pairs during mammalian meiosis

The synaptonemal complex

The structure of the mammalian synaptonemal complex (SC)

Mammalian SYCP1

Human SYCP1

SYCP1 core undergoes self-assembly

Size-exclusion chromatography multi-angle light scattering (SEC-MALS)

SYCP1 is an obligate tetramer

11 amino acid
deletion

SEC-MALS

SYCP1 core consists of an $\alpha \mathrm{N}$-tetramer and $\alpha \mathrm{C}$-dimers

SAXS analysis of the SYCP1 $\alpha \mathrm{N}$-tetramer and $\alpha \mathrm{C}$-dimer

Small-angle X-ray scattering (SAXS)
$P(r)$ Interatomic distance distribution

SAXS analysis of the SYCP1 $\alpha \mathrm{N}$-tetramer and $\alpha \mathrm{C}$-dimer

 $P(r)$ Dmax reveals coiled-coil length

Interatomic distance distribution

SAXS analysis of the SYCP1 $\alpha \mathrm{N}$-tetramer and $\alpha \mathrm{C}$-dimer

 Cross-sectional Rg reveals coiled-coil width| SYCP1 | | |
| :---: | :---: | :---: |
| | α-helical core | - 976 |
| $\alpha \mathrm{N}$-tetramer α C-dimer | | Tetramer - four-helical bundle Dimer - coiled-coil |

Cross-sectional radius $\left(R_{C}\right)$

The obligate structure of the SYCP1 core

How does SYCP1 core self-assemble?

Crystal structure of SYCP1 $\alpha \mathrm{N}$-end

SYCP1 N-terminal self-assembly

How does SYCP1 core self-assemble?

Crystal structure of SYCP1 α C-end

SYCP1 α C-end undergoes pH -induced tetrameric assembly

SEC-MALS

SAXS analysis of SYCP1 α C-end dimers and tetramers $P(r)$ and cross-sectional Rg analysis

Cross-sectional radius $\left(R_{C}\right)$

SAXS analysis of SYCP1 α C-end dimers and tetramers

Using MBP fusions to determine helical orientation

SAXS analysis of SYCP1 α C-end dimers and tetramers

Using MBP fusions to determine helical orientation

SAXS analysis of SYCP1 α C-end dimers and tetramers

Using MBP fusions to determine helical orientation

SAXS analysis of SYCP1 α C-end dimers and tetramers

Using a tethered dimer to determine helical orientation

Tethered dimer

SYCP1 α C-end undergoes pH -induced tetrameric assembly

Chromosomal recruitment of SYCP1

SYCP1 obligate structure

Self-assembly of SYCP1 into a supramolecular lattice

Dunce et al 2018 Nature Structural \& Molecular Biology.

Another example - anti-parallel SYCE1 dimer
 Direct modelling of coiled-coils

Dunne \& Davies 2019 Chromosoma

Another example - anti-parallel SYCE1 dimer

 $P(r)$ distributions of MBP fusions

Dunne \& Davies 2019 Chromosoma

Another example - anti-parallel SYCE1 dimer
 Multi-phase ab initio modelling of MBP fusions

Dunne \& Davies 2019 Chromosoma

Another example - SYCE3 self-assembly Multi-phase modelling of SYCE3 structures

Dunne \& Davies 2019 Journal of Biological Chemistry

Acknowledgements

Current Lab members
James Dunce
Gurusaran Manickam
Amy Milburn
Orla Dunne
Lucy Salmon
Chandni Ravindan (joint with Amy MacQueen)
Former Lab members
Lee Sen
Matthew Ratcliff
Vincentius Aji Jatikusumo
Carmen Espejo Serrano
Omar Al-Jourani
Urszula McClurg
Arnaud Basle (X-ray manager)
All at Diamond Light Source beamline B21

wellcometrust

Fellow
© THE ROYAL SOCIETY

