The molecular basis of meiotic chromosome synapsis by SYCP1

Owen Davies

Institute for Cell and Molecular Biosciences

University of Newcastle, UK

Meiotic cell division

Oocytes/spermatozoa

Establishment of homology pairs during mammalian meiosis

Establishment of homology pairs during mammalian meiosis

Establishment of homology pairs during mammalian meiosis

The synaptonemal complex

The structure of the mammalian synaptonemal complex (SC)

Mammalian SYCP1

Human SYCP1

SYCP1 core undergoes self-assembly

SYCP1 is an obligate tetramer

SYCP1 core consists of an α N-tetramer and α C-dimers

SAXS analysis of the SYCP1 $\alpha \text{N-tetramer}$ and $\alpha \text{C-dimer}$

Small-angle X-ray scattering (SAXS) P(r) Interatomic distance distribution

SAXS analysis of the SYCP1 α N-tetramer and α C-dimer P(r) Dmax reveals coiled-coil length

SAXS analysis of the SYCP1 α N-tetramer and α C-dimer *Cross-sectional Rg reveals coiled-coil width*

The obligate structure of the SYCP1 core

How does SYCP1 core self-assemble?

Crystal structure of SYCP1 $\alpha N\text{-end}$

SYCP1 N-terminal self-assembly

How does SYCP1 core self-assemble?

Crystal structure of SYCP1 $\alpha\text{C-end}$

SYCP1 α C-end undergoes pH-induced tetrameric assembly

SAXS analysis of SYCP1 α C-end dimers and tetramers P(r) and cross-sectional Rg analysis

SAXS analysis of SYCP1 αC-end dimers and tetramers Using MBP fusions to determine helical orientation

SAXS analysis of SYCP1 αC-end dimers and tetramers Using MBP fusions to determine helical orientation

SAXS analysis of SYCP1 αC-end dimers and tetramers Using MBP fusions to determine helical orientation

SAXS analysis of SYCP1 α C-end dimers and tetramers Using a tethered dimer to determine helical orientation

SYCP1 $\alpha \text{C-end}$ undergoes pH-induced tetrameric assembly

Chromosomal recruitment of SYCP1

SYCP1 obligate structure

Self-assembly of SYCP1 into a supramolecular lattice

Dunce et al 2018 Nature Structural & Molecular Biology.

Another example – anti-parallel SYCE1 dimer Direct modelling of coiled-coils

Maximum dimension (Dmax) = 186 Å

Dunne & Davies 2019 Chromosoma

Another example – anti-parallel SYCE1 dimer P(r) distributions of MBP fusions

Dunne & Davies 2019 Chromosoma

Another example – anti-parallel SYCE1 dimer Multi-phase ab initio modelling of MBP fusions

10

8

6

4

2

0

Residuals

0

In (Q)

Dunne & Davies 2019 Chromosoma

Another example – SYCE3 self-assembly Multi-phase modelling of SYCE3 structures

Dunne & Davies 2019 Journal of Biological Chemistry

Acknowledgements

Current Lab members James Dunce Gurusaran Manickam Amy Milburn Orla Dunne Lucy Salmon Chandni Ravindan (joint with Amy MacQueen)

Former Lab members Lee Sen Matthew Ratcliff Vincentius Aji Jatikusumo Carmen Espejo Serrano Omar Al-Jourani Urszula McClurg

Arnaud Basle (X-ray manager)

All at Diamond Light Source beamline B21

wellcometrust

Fellow

