Design Considerations for Button BPMs from DESY

Design for ESS and gene

Dirk Lipka, MDI, DESY Hamburg, Germany Diamond BPM workshop, 2. and 3. May 2019

Outline

ESS Button BPM design

- 2014 with dissipated power and temperature distribution
- 2015 with dissipated power
- 2016 with requested larger button

General remarks for heat dissipation

Development of feedthroughs

Within the process of optimizing the diameter of the button

- A suggestion was made according the shown design with N-connectors
- This was used to simulate signal generation with beam parameters provided by ESS
- Analysis of the signals in frequency domain and calculation of the sensitivity was prepared

DESY. | Design Considerations for Button BPMs from DESY | Dirk Lipka, BPM Workshop at Diamand, 2. and 3. May 2019 |

Dissipated power

- Simulated resonances power will be transferred to the buttons and could heat it, see figure on the right, this a mode at about 5 GHz with highest impact.
- The dissipated power is: P =

 $f_{Macropuls}t_{pulselength}f_{Bunchrepetition}Q^2 k_{loss}$, with $f_{Macropuls}=14$ Hz, $t_{pulselength}=2.86$ ms, $f_{Bunchrepetition}=352$ MHz, Q = 178 pC.

- The loss factor k_{loss} are a result of wakefield simulation which considers the geometry and the bunch length. With the shortest bunch length the largest loss factor results to be 0.69 V/pC.
- This results in a maximum dissipated power of 0.307 W per BPM, temperature simulation next slide.

Temperature distribution with more detailed design

- Input of temperature simulation: field distribution from previous slide scaled to calculated max. dissipated power, thermal conductivity and radiation according material properties, without cooling only at the end of tube fixed temperature of 20°C: corresponds to worst configuration
- Result: max. temperature rise of 0.21K
- Temperature increase is small because the duty factor $(f_{Macropuls}t_{pulselength})$ of ESS is small compared to a synchrotron. Therefore more attention has to be taken for accelerators with high duty factors.

Dissipated power for second design

- The field distribution of the mode with highest dissipated power and symmetric mode is shown, $k_{loss} = 549.2$ V/nC results in 0.245 W at a frequency of 3.77 GHz (not harmonics of bunch repetition rate) and centered beam
- A dipole mode is produced too, see field distribution, at a frequency of 3.09 GHz (not harmonics of bunch repetition rate)

• The power is below 0.1 W per BPM for maximum offset

ESS requests to increase the button diameter

- Loaded resonance frequency $f_L = 1.75$ GHz, near to harmonics of $f_L/352$ MHz=4.97, unloaded resonance frequency is 1.67 GHz
- External quality factor = 0.833, results in a decay time of $\tau = Q/(\pi f_L) = 151.6$ ps, bunch spacing of 2.84 ns is factor 19 larger, therefore this mode is already decayed when following bunch arrives monitor

 Beam through max. z-amplitude (near button corner) results in P_{max} = 5 mW

Therefore maximum dissipated

power still negligible

Alitude

E-field z-component amplitude distribution

DESY. | Design Considerations for Button BPMs from DESY | Dirk Lipka, BPM Workshop at Diamand, 2. and 3. May 2019 |

General remarks for heat dissipation

Until here only a linear accelerator was considered

- The low dissipated power is caused by a low duty factor of the beam current because of a linear accelerator
- Synchrotron and continuous wave operation of linear accelerators produce much higher duty factor
- Smaller beam pipes will cause a more dense induced power
- Smaller beam pipes cause smaller BPMs with relative similar requirements, therefore mechanical tolerances will decrease accordingly
- Shorter bunches induces higher frequencies with higher dissipated power
- Harmonic resonances to bunch repetition rates enhance dissipated power

Experience of the development for BPMs

Requirements on the feedthrough:

- (General requirements of the BPM system has to be provided by the accelerator coordinators)
- Signal transmission should be provided for each feedthrough with similar properties; variation of attenuation or reflection in the feedthrough should be avoided which will cause individual electrical offsets
- Reflection of signals in the feedthrough can influence resonances in BPM, especially for cavity BPMs where the external quality factor can be influenced
- Reflections in the feedthrough can increase the heat dissipation

Result

Design the button and BPM with the company together to maintain

- Similar feedthrough properties and
- Good transmission and
- Low reflections in a wide frequency range

Questions to companies:

- Values of dielectric constant of feedthrough isolator (data sheet or measured) including tolerances
- Process of production which limits design

Experience of the development for BPMs

DESY. | Design Considerations for Button BPMs from DESY | Dirk Lipka, BPM Workshop at Diamand, 2. and 3. May 2019 |

Quality Management efforts Plan, Do, Check, Actions ...

Quality steps on the feedthrough production:

- Descriptions of Items, incl. Change and Configurations-Management (Quality Management)
- Detailed technical drawings and 3D model-files (Quality assurance)
- Descriptions of production process (workflow and steps) and work place instructions (Quality assurance)
- Process and material Documentation (Quality assurance)
- Inspection of incoming parts (Quality control)
- Supplier Audits (Quality Management)

- Determination of quality properties (Quality assurance)
- Determination of rework (Quality Management)
- Implementation of tools for effectiveness of running processes (Quality Management)
- Testing incoming parts (Quality control)
- Documentation of quality checks (visual controls, vacuum test, cryogenic test, checking RF properties, shock tests...) (Quality assurance)
- Agreement of "Jour-fix" Dates (Quality control)
- Agreement of delivering schedule (Quality Management)
- Create a start-up meeting (Quality Management)

Courtesy Silke Vilcins

Ready parts waiting for shipment

Thanks a lot...any questions

Contact

DESY. Deutsches Elektronen-Synchrotron Dirk Lipka Machine Diagnostics Instrumentation (MDI) Dirk.Lipka@desy.de

www.desy.de