Fibre Diffraction

Dr. Himadri S. Gupta School of Engineering and Materials Science Queen Mary University of London

S4SAS 2014

(Mineralized) Fibre (il) (Small-Angle) Diffraction Combined with Mechanics

Dr. Himadri S. Gupta School of Engineering and Materials Science Queen Mary University of London

S4SAS 2014

Outline

- (why ?) Mineralized Biological Tissues
 - as hierarchical fibre composites
- SAXS on mineralized fibrils: mechanics
 - Meridional scattering features
 - Data reduction for fibril mechanics
 - Example data sets
- WAXD on mineralized fibrils
 - Data reduction for mineral mechanics
 - Orientation and sample geometry
 - Example data sets
- SAXS on fibrils: orientation
 - Identification and background correction
- SAXS on fibrils: radial deformation
 - Approximate methods
- Summary

Bone as a hierarchical material

The Key Mechanical Quality of Bone Combination of Two Complementary Properties

Elastic modulus: Resistance to reversible (small) deformation Torgh Forse per unit area Strain: Percent elongation under load Energy needed to tear the material apart

The nano-composite nature of the bone matrix How does it contribute to toughness?

Mineral particle collagen fibrils

100 – 200 nm diameter axial periodicity in electron density with period D = 64 – 67 nm triple helical collagen molecules, ~ 300 nm long, 1.2 – 1.5 nm lateral spacing (Ottani et al *Micron* 2004)

apatite mineral

carbonated apatite platelets;

3 – 5 nm thick, 30 – 50 nm wide (W. J. Landis et al *J. Struct. Biol.* 1996, Rubin et al *, Bone*, 2004)

noncollageneous proteins

phosphorylated, -vely charged, amorphous; ~ 1 - 2 wt % bone osteopontin, osteocalcin (Nanci et al, *J. Struct. Biol* 1999)

SAXD diffraction spectrum from mineralized collagen fibril

SAXD diffraction spectrum from collagen fibril

Image courtesy of Peter Fratzl, Max Planck Institute of Colloids and Interfaces

SAXD diffraction spectrum from unmineralized collagen fibril

Depends on the gap/overlap ratio

- In tendon collagen, O/D ~ 0.48
- Slice/plane through 3D object

Importance of Aligning Fibrous Texture with X-ray Beam

A. Karunaratne et al, Methods in Enzymology (2014)

Principle

Design micromechanical rig

Applications (biomaterial / biomedical)

Schematic of an In situ SAXS/WAXD deformation setup

A. Karunaratne et al, in review

A representative SAXS spectrum of mineralized collagen Multiple structural contributions need to be separated

Mineral

platelet:

shape,

size

Setting up the integration zone Inherently approximate; count statistics

- Figure out which is the main direction
 - Sample structure •
- Make your sector large enough to include "most" of the intensity
- Trade-off between angular size and statistics ۲

Meridional SAXD: Fit functions Gaussian + linear background

empirical; getting rid of SAXS scattering

Meridional SAXD: Correcting for background Empty cell correction or not?

Defining fibril strain

$$\varepsilon_F = \frac{D(\varepsilon_T) - D(\varepsilon_T = 0)}{D(\varepsilon_T = 0)}$$

- Implicitly, we are assuming a homogeneous fibril deformation
- The ab-initio modellers may have

something to say about that

Launey et al, Annu. Rev. Mater. Res. (2010)

First physically relevant plots: Fibril strain vs Tissue strain

Merging data from multiple samples: Don't be surprised by significant scatter in biological samples

Binning the data to extracting mean trends

Data from experiments reported in H. S. Gupta et al, PNAS (2006)

Example: Altered Fibrillar Mechanics in Metabolic Bone Diseases Hypophosphataemic rickets

SAXD diffraction spectrum from mineralized collagen fibril

Hierarchical fibre composites: Example WAXD spectrum

Texture/orientation along fibre but again angular distribution

- You will not get a narrower alignment of mineral than fibrils
- Intrinsic poor crystallinity of apatite

T. Nakano et al, Bone (2002)

Tilting to measure on-fibre deformation Assuming changes in SAXS spectrum minimal

Setup of a combined SAXS/WAXD experiment

Representative experimental results

Mineral and Fibril strains

Data from experiments reported in H. S. Gupta et al, PNAS (2006)

An explicit structural model is essential to integrate multiscale strain measurements

Back to the original fit function: variations in width term and their physical interpretation

Broadening of I(q)

- Increasing distribution f fibril strain
- Need to check that

integrated area ~ const

S. Krauss et al, Bone (2009)

Widths: correct for instrumental broadening No golden rule; use a highly oriented collagen

S. Krauss et al, Bone (2009)

Increase in width of I(q) occurs as the tissue becomes inelastic Correlate to the tissue mechanics

S. Krauss et al, Bone (2009)

Inhomogeneous deformation in the post yield region Example of the nanoscale toughening in antler bone

S. Krauss et al Bone (2009)

Background subtraction

Especially important in mineralized tissues due to strong SAXS bgr

A. Karunaratne et al, *in review*

Fitting the data

Scattering intensity from mineral and collagen

- Correct method will be to take
 - $W = (W_m^2 W_f^2)^{1/2}$
 - Wf is the width of a single fibril in the lateral direction
- ~ $1/R (1^{st} \text{ zero} (2J_1(qR)/qR))^2$ A. Karunaratne et al, *in review*

- Subtracting diffuse background from the oriented signal is important
- Especially for inorganic/organic composites like bone

Direction of orientation and Degree of orientation A first approximation: example of osteoporotic bone

If by Fibres you mean anisotropic inclusions ...

The method of Fratzl et al

P. Roschger et al, J. Struct. Biol. (2001)

45a

An example of mineral alignment with development L4-vertebral data (P. Fratzl et al)

- Shows clearly that mineral platelets become more aligned with development
- However, be aware of 3D orientation effects

Approximate method

Assume all fibrils have the same percentage reduction in radius

The result: Fibrillar swelling during axial relaxation

In excess of volume conservation

implying extrafibrillar diffusion

• No specific assumptions on size

distributions

H. R.C. Screen et al, Soft Matter (2011)

Summary

- Case study : mineralized fibrils in bone-like tissues
- Extracting mechanics at multiple scales:
 - fibril strain,
 - heterogeneous fibril deformation
 - Mineral platelet strain
- Interaction of sample geometry and spectra obtained
- Method general: applied to
 - Tendon collagen, muscle, mineralized collagen in bone, enamels and other high-ceramic "fiber" composites
 - Geometry of the 3D SAXD pattern in each case has to be considered separately
 - Mechanics is different from the "invariants" and other integral measures that have been discussed before

