

SAS Data Analysis – Colloids

Dr Karen Edler

Size Range Comparisons $Q = 2\pi/d$ (Å⁻¹) 0.01 0.001 10 0.1 proteins viruses bacteria nanoparticles micelles (polymers molecules grain nanotubes boundaries precipitates nanocomposites 1Å 1µm 1nm 1mm **SAXS** Optical microscope X-ray diffraction Light scattering **SANS** Electron Transmission electron microscope diffraction Analytical STEM (EDAX)

Sample Considerations

- Solid, liquid, (gas!)
 - > air scatters X-rays, so sample often in vacuum
- Thickness
 - multiple scattering
- Concentration
 - structure factor effects
 - minimum concentrations

Contrast

Sample Holders

Variety depending on instrument & sample

Sample thickness

- Affects transmission (total intensity)
- Also affects shape of curve \Rightarrow hard to analyse
- Aim for ~70% transmission

Concentration $I(Q) \propto N_p V_p$

- Big particles scatter more (can hide small ones)
- Higher concentration = more signal

BUT

Consider detector limits!

Don't burn out your detector...

High concentration can complicate analysis

 \blacktriangleright especially for charged particles (see later)

- Minimum concentration for lab source: ~10mg/ml
 - watch out for highly coloured solutions eg nanoparticles

Contrast & Contrast Matching

- Both tubes contain pyrex fibers
 + borosilicate beads + solvent.
- (A) solvent refractive index matched to pyrex fibres
- (B) solvent index different from both beads & fibers – scattering from fibers dominates

Scattering Length Density

- scattering from an object depends on how many electrons there are in unit volume
- use *scattering length density, Nb,* to calculate scattering from molecules:

$$Nb = \frac{N_A \cdot \rho}{MW} \sum_i b_i$$
$$= N \sum_i b_i$$

where: b_i = neutrons: scattering length for element, cm

X-rays: $b = 2.81 \times 10^{-13} \times no.$ of e^{-} in atom

 ρ = density of compound, g cm⁻³

 $N_A = Avogadro's$ number, mol⁻¹

MW = molecular weight, g mol⁻¹

N = number density of atoms in material, cm⁻³

Units of Nb: cm⁻²

Will I see scattering?

 $I(Q) \propto (\rho_s - \rho_p)^2$

- Scattering depends on <u>difference</u> in scattering length density between two regions
- but also the sample adsorption (also \propto no. of e⁻)

Polystyrene spheres ρ_p = 9.5×10¹⁰cm

Neutrons $\rho_s = 1.4 \times 10^{10} \text{cm}$

 $\begin{array}{c|c} \mbox{In water (xrays)} \\ \rho_s = 9.41 \times 10^{10} \mbox{cm} \end{array} & \begin{array}{c|c} \mbox{In hexanol (xrays)} \\ \rho_s = 7.36 \times 10^{10} \mbox{cm} \end{array} & \begin{array}{c|c} \mbox{In chloroform (xrays)} \\ \rho_s = 1.25 \times 10^{11} \mbox{cm} \end{array} \\ \hline \rho_s = -0.5 \times 10^{10} \mbox{cm} \end{array} & \begin{array}{c|c} \rho_s = -0.3 \times 10^{10} \mbox{cm} \end{array} & \begin{array}{c|c} \rho_s = 0.8 \times 10^{10} \mbox{cm} \end{array} \end{array}$

SAS Data Analysis

- Simple but not very accurate:
 - Porod slopes
 - Guinier analysis
 - (Zimm plots & Kratky plots polymers, proteins)
- More helpful, but more complex:
 - fitting models to data
- Most complex (need more data):
 - fitting protein structures
 - > monte carlo/simulated annealing methods

Scattered Intensity

• From scattering theory:

$$I(Q) = N_p V_p^2 (\rho_p - \rho_s)^2 F(Q) S(Q) + B$$

Where: N_p = number of particles

 V_p = volume of particle

 ρ = scattering length density (of particle/solvent)

B = background

F(Q) = form factor

S(Q) = structure factor

Form Factor = scattering from within same particle \Rightarrow depends on particle shape

Structure Factor = scattering from different particles \Rightarrow depends on interactions between particles

Form Factors

- For particular particle shapes can calculate correlation functions
- Need to calculate Fourier transform of the distribution of scattering length density in real space:
 - interference from X-rays scattered from different parts of the same particle
 - Angular part of the scattering gives information on particle shape, size
 - > Sum scattering from all scattering centres in particle
 - \Rightarrow "form factor"

Porod's Law

- Start with form factor: $F(q) = \frac{1}{V_n} \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$
- Now consider radial pair correlation function for sphere, with sharp edges, radius R:

$$\gamma(r) = 1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^3$$
$$F(qR) = \frac{1}{V_p} \int_0^\infty \left[1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^3\right] \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

• Integrate by parts three times: $F(qR) \approx \frac{3}{2R^3} \frac{S_p}{V_p} \frac{1}{q^4}$

At high scattering angles, for any system with sharp, smooth surfaces: $I(Q) \propto \frac{1}{q^4}$

What can SAS measure?

14

The SANS Toolbox. Boualem Hammouda, NIST

http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf

Porod Slope

- plot data as log₁₀(intensity) against log₁₀ (Q)
- slope = -D (mass fractal) or slope = $-D_s$ -6
 - \Rightarrow fractal dimension of particle or particle surface
 - Keep in mind size range you are using!

Analysing Scattered Intensity

• observed scattered intensity is Fourier Transform of real-space shapes

$$I(Q) = N_p V_p^2 (\rho_p - \rho_s)^2 F(Q) S(Q) + B_{inc}$$

Where: Np = number of particles Vp = volume of particle ρ = scattering length density (of particle/solvent) Binc = incoherent background F(Q) = form factor S(Q) = structure factor

Form Factor = scattering from within same particle \Rightarrow depends on particle shape

Structure Factor = scattering from different particles \Rightarrow depends on interactions between particles

Form Factors

- depend on shape of particle
- for dilute solutions S(Q) = 1 and so $I(Q) \propto F(Q)$

General form of F(Q):

$$F(Q) = \frac{1}{V_{\rho}^{2}} \left| \int_{0}^{V_{\rho}} \exp[if(Q\alpha)] dV_{\rho} \right|$$

where α = shape parameter eg radius of gyration

can work out F(Q) exactly for some shapes eg sphere, radius R_p: $F(Q) = \left[\frac{3(Sin(QR_p) - QR_pCos(QR_p))}{(QR_p)^3}\right]_{18}^2$

DNA Complexes in Solution

- Prepared by Dr Eugen Stulz (Southampton) & Dr Cameron Neylon (ISIS)
- Porphyrin complexes intercalated in DNA
- 12 hr exposure, 50µM solution

Tubulin

- With Niels Galjart, Erasmus MC, Rotterdam
- 5mg/ml solution in buffer BRB80, 15min exposures

Initial scattering fits to cylinder, radius ~6nm, length ~30nm

Not yet able to model later scattering!

Structure Factors

- for dilute solutions S(Q) = 1
- particle interactions will affect the way they are distributed in space \Rightarrow changes scattering
- for charged spheres:

Concentration effects

Figure 1: Cross-section for several different volume fractions of PS spheres in glycerol vs. QR.

Figure 2: Measured and model structure factors, S(Q), (circles and dashed lines, respectively) vs. QR for PS spheres in glycerol.

Small Angle X-ray Scattering Study of a Hard-Sphere Suspension: Concentrated Polystyrene Latex Spheres in Glycerol

L. B. Lurio¹, D. Lumma¹, A. R. Sandy¹, M. A. Borthwick¹, P. Falus¹, S. G. J. Mochrie¹, J. F. Pelletier², M. Sutton², Lynne Regan³, A. Malik⁴ and G. B. Stephenson⁴

Combining F(Q) & S(Q)

- In most cases when fitting will need to include both form and structure factor
- Can tell by taking concentration series
 - if shape of scattering doesn't change when sample is diluted then S(Q) = 1

 Normalised for concentration

SAS Data Analysis - Fitting

SAXS on PEI/CTAB Solutions

Instrumental Smearing Effects

- Calculations of models assumes point radiation source
- In reality beam might be 1x1mm or even 1x10mm (lab source)
- Need to account for beam shape/size
- Can either "desmear" data
 - Issues with removing some of the information from your sample scattering
 - Problematic for rod-like scatterers
- Or smear the model
 - Slows down fitting

Polydispersity

"smears out" sharp features in pattern

Au Nanorods

Fitted to charged cylinders

- Radius 80Å
- Length 190Å
- Polydispersity 0.29

Gold Colloid

Carbon Nanoparticles

Group of Dr Frank Marken

Fitting SANS Data

Use computer programs to combine form factor and structure factor:

- Fit using ellipse + structure factor for charged objects which repel each other
- Use three contrasts to help pin down shape and size accurately

Silica Aerogels

- Gels made from SiO₂ in acidic water, supercritically dried.
- Very strong scatterers!
- With Mike Grogan, Physics (Uni. of Bath)
- Applications in fibre optics

Model by Teixeira assumes fractal aggregate of spherical building blocks:

Block radius: 3Å Fractal Dimension: 2.96 Correlation length: 29Å

DANSE SANSView software

- Designed for fitting neutron data but can also be used (with care) for X-ray data
- Includes reflectivity analysis
- Available from:

http://danse.chem.utk.edu/sansview.html

Fitting Software – SANSView

Sansview - Fitting -			
File Edit View Analysis Tool Fitting G	aph Help		
🛅 🦄 🕒 🏟 🗛 🗐 🚺	bookmark V FitPage1		
Data Explorer X	FitPage1	-	Graph4 X
Selection Options			
Select all Data			10 ¹
Data	Model [M1]		AuNPnorm.itx
	D Mode		
	Customized Models Structure Factor Details		10-1
	CylinderModel P(Q)*S(Q) None		
			Å 10 ⁻³
	Model Parameters		
	background 0 [1/cm]		
	Vienath 439.83 [A]		10-5
	Ølsrale 0.00063175		10-6
	Fradium 104		•
			10^{-7} 10^{-1} 10^{0}
Theory			$O(A^{-1})$
	sldSolv 1e-06		Q(A)
	Polydispersity and Orientational Distribution		E 🔇 🖓 🕂 🕤 🔚 🖻 🏟 🗡
	On Off ?		Graph5 X
	PD[ratio] Min Max Npts Nsigs Function	-	
	Distribution of length 0 100 10 gaussian 🔻	-	15
	Distribution of radius 0.2 100 10 gaussian		
			10
			1.0
·	Fitting		(p) 28 0.5-
	Set Instrumental Smearing		nali
Load Data	O None ○ Use dQ Data ○ Custom Pinhole Smear ○ Custom Slit Smear		
Delete Data	No smearing is selected		als(
Freeze Theory	Set Weighting by Selecting dI Source		0.5 -
New Plot	No weighting Use di Data Ouse isgrt(L Data)		22
Append Plot To Graph2	Q range Min[1/A] Max[1/A] Masking(2D)		-1.0
	Reset 0.01717585 0.30279886		Residuals for M1[AuNPnorm ity]
Send To Fitting	Calcor 0.02/1/003 0.002/9000 Editor		
Single Mode	Chi2/Npts Npts(Fit) Total Npts Compute		10 ⁻¹ 10 ⁰
🔘 Batch Mode	0.0014171 1274 1274 Fit		Q(A ⁻⁺)
		-	🗏 🔇 🔇 🕂 💕 🔚 🖶 🏔 🗡
Computation completed!	,		

Other Free SAS Software

 Library of available software at: <u>http://www.small-angle.ac.uk/small-angle/Software.html</u>

Fitting Tips

- Models have lots of variables
- Models have lots of variables (grupped)
 Set as many as possible to known values!
 Initially set reasonable values (set the set of the set for unknowns
- Fit only 2 variables at a time until are close to good fit
- Check χ^2 should get smaller as fit improves
- Don't trust significant figures
 - \succ look at how fit changes as you alter values to get errors
- USE COMMON SENSE!

volume fraction 0.00513365 radius (A) 84.3844 length (A) 222.573 SLD cylinder (A⁻²) 0.000123 SLD solvent (A⁻²) 9.39e-06 charge 20 movalent salt (M) 0.0182752 Temperature (K) 298 dielectric const 78 incoh. bkg (cm⁻¹) 3

Effects of Sample Alignment

- Scattering no longer circular
- Form areas of high intensity perpendicular to direction of alignment

Isotropic vs Nonisotropic Structures

No shear \Rightarrow Isotropic solution

Shear \Rightarrow aligned micelles

Shear + higher T \Rightarrow isotropic again ³⁸