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Why Electrons?
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Limiting aperture = diffraction Rayleigh’s criterion: to resolve two point sources,
Point source = airy disk (b) P1 airy disk maxima overlays first minima of P2.

Resolution dependent on wavelength and numerical aperture (NA)

In EM, NA tends to unity > To image 1A, A = 0.5A



Why Electrons?

Radiation Type Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m)  10° 1072 107 0.5x10°® 10°° 107° 107+
10* 10° 10 10" 10 10* 10°
h h .
A=— = Electrons act as both particles and waves
p mev
Debroglie equation The wavelength of electrons depends on velocity

We can control wavelength of electrons by voltage

To match x-rays we need a voltage between 1-1000kV

Higher voltage = shorter wavelength.

Current max resolution

But higher energy = more specimen damage Materials: 0.05 nm

Biological TEM operate at 300kV max: A~0.2pm Biology: 0.14 nm



Signals from Electron Interaction with Matter
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Basic Image Formation

Illumination

Object Lens Detector
source

7]
l

No—— X
‘\

RV

Y
\/
=6 S

Condenser lens Objective/projector lenses
Focuses illumination Magnifies object

on object

vV Vv VY VvyyYy

©




Light vs. Electron Microscope
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Light vs. Electron Microscope
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Vacuum System

Why operate in vacuum?
e Electrons interact well with matter
* Mean-free-path length: 20 cm in air
2 km in vacuum
How is vacuum achieved?
* Rotary pump — ATM to rough vac.
Va1 * Qil diffusion pump (ODP) / Scroll Pump - low vac

() H@ * Turbo pump — high vacuum

V42 V8 Turbo * lon getter pump (IGP) — ultra high vacuum

wH Igp4é\*fécamAir[N2.] * Cryo-pump/trap — high vacuum
W i

How is vacuum monitored?

* Pirani gauge (Pir) — ATM to low vac
* Penning gauge (Pen) — high vac
* Current readout (IGP) — ultra high vac

1Pa = 0.01 mbar
Room Pressure: 10° Pa
Rough Vacuum: 100-0.1 Pa
Low Vacuum: 0.1 -10"%
High Vacuum: 10™* - 1077 Pa
Ultra High Vacuum: 10~7 Pa and below

Vacuum system
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Electron Source

Thermionic Field Emission

Optic axis Filament
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Comm 5~ s Gun quality: |
I ey L Temporal coherence — Wavelength spread
illumination -
Cas Spatial coherence  — Angular spread
Units Tungsten LaBsg Schottky FEG Cold FEG
Work function, ® eV 4.5 2.4 3.0 4.5
Richardson’s constant A/m?K? 6 x 10° 4 x 10°
Operating temperature K 2700 1700 1700 300
Current density (at 100 kV) A/m? 5 102 10° 108
Crossover size nm > 10° 104 15 3
Brightness (at 100 kV) A/mZsr 10" 5 x 10"’ 5 x 10'? 10"
Energy spread (at 100 kV) eV 3 15 0.7 0.3
Emission current stability Y%/hr <1 <1 <1 5
Vacuum Pa | 10° 10" 0"
Lifetime hr 100 1000 >5000 >5000
Cost of tip £80 £800 £8000 £8000
Time to replace 1-2 days 1-2 days 5-8 days 5-8 days



Tungsten (W)
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The Lens System

Electron gun

| — Condenser Focuses electrons on specimen
- system  (controls illumination cone shape/intensity)
Condensor aperture
E— ms - a
_ — Objective Principle Magnification Lens
Specimen port Objective aperture . e
system (magnifies sample, 80/100x)
[Ri/ Objective lens |
. Diffraction lens . o po .
Intermediate aperture S| ermedinte s | PYOJECEOT Weaker magnification lenses
| - system (magnifies sample, 2-10x)
Binoculars @

LA =T T -

Reduces beam intensity
Parallelizes beam

l{ Image recording system

Deflector Corrects beam shape
Ve

beam coils  Corrects beam location/angle




The Condensing Lens
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The Condensing Lens
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Magnetic lenses are poor quality and have severe aberrations
(aberrations increase with distance from centre)

“a magnetic lens is like using the bottom of a soda bottle as a magnifying glass”

“if our eye lens worked as well as a magnetic lens we would be legally blind”

quotes in William and Carter)
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Apertures

(A)

Specimen
Maximum
aperture 2/
collection
angle \E
i NP

<—— > diaphragm

“~ Excluded
electrons

- Image plane

....................................................

Condenser aperture Controls beam intensity, parallelity
Objective aperture Amplitude contrast
Selective area aperture Diffraction imaging/dark field



Condenser stigmators
correct beam shape

(circle vs. oval)

Objective stigmators
correct image

Deflector CQiIs
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Direction of magnetic field : B

q

Direction of force acting on
electron beam: F

Direction of Electron beam

a. o
Coil

underfocused Sig  underfocused ASig

Real space

Fourier space



Shift/Tilt Coils
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Get the beam down the scope

Make sure beam is parallel/aligned to
optical axis (bright field imaging)

Low dose imaging

Automatic procedures (e.g. eucentric height/focus)



Optic axis

Condensor System

Gun tilt/shift: sets up beam to enter condenser

\
Gun crossover

system on optical axis

C1 = Spot size, controls beam size and quality

> > Cllens

Spot 9: Strongest lens setting
Highest crossover
RN Dimmest beam and smallest focused beam
Most coherent little spatial divergence
Excluded Only most parallel electrons reach specimen
electrons
Spot 1. Weakest lens setting
Lowest crossover
~ Brightest & largest focus beam diameter
; Least coherent
C2 lens/diaphragm _ '
Greatest spatial divergence
Majority of electrons reach specimen
Reduced
convergence o .
angle C2 aperture = limits amount of electrons reaching sample
C2 lens = Intensity knob. Controls diameter of beam
Specimen reaching sample =» (Dose/beam intensity)



Note on C2 Lens and Dose

Dr  Dr
D, = =
A7 A mr?
| | : r
1 r 1
Dose in an area increase 4x when DA = Dose per unit area
you half the radius. DT = Total dose In beam
USE THIS INTENSITY CONTROL A = Area

KNOB WISELY! r = Beam Radius



C3 Lens (Krios)
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Talos/Glacios
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Parallel illumination of specimen reduces aberrations

C3 lens provides parallel illumination but only at certain C2 values

SO



Upper polepiece

Specimen holder Cryobox/blade

Lower polepiece

Braids to
cryodewar




g

Upper polepiece
Cryoblades colder than sample = cryotrap Specimen holder Cryobox/blade
] OA aperture/phase plate
Keeps sample clean and cold by absorbing
contaminant from sample/column Braids to
cryodewar

Cryoblades needs to be warmed up regularly
to remove contaminants > cryocycle

Lower polepiece

Cryocycle: turns off IGP, pumps specimen Gap between pole pieces is spherical
chamber with Turbo aberration (Cs). Smaller gap = better.



Eucentric Height

Optical Axis Optical Axis
| |
| |
| |
Specimen Tilt axis
Specimen : :
holder | |
Excellent! Bad

Tilt axis aligns on optical
axis and eucentric focus

Specimen does not move
when tilted

Specimen moves
when tilted

Change specimen Z-
height

Optical Axis
|

Very Bad
Specimen moves when tilted

Change specimen Z-height
Software or engineer required
to align tilt axis with optical axis
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Focus knob modulates objective
lens current changes clarity of
image (focus)

If crossover above image plane
- overfocused

If crossover below image plane
- underfocused

Biological samples contain light
atoms so minimal phase shifts
occurs between scattered and
unscattered rays

- At focus, very little contrast

To see sample, either image
underfocus or use phase plate
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Conventional TEM
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Projector System

Electron gun

Condensor aperture

Specimen port Objective aperture
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Image recording system
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Projector
system

Responsible for magnification
in SA mode (record mode)

Magnification knob changes
strength of projector lens

Objective stays constant
(prevents hysteresis)



Imaging System

Fluorescent Screen Charge coupled device (CCD)

Scintillator
/ . .
electron to light conversion

Fiber optic
light image transfer

=

ZnS doped to emit light at ~500nm

CCD or CMQOS sensor
light to charge conversion

Film + Scanner Direct Electron Detectors (DEDs)
(e.g. K3/Falcon)

Electron to charge

conversion
e
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Camera Quality Measurement

Modular transfer function
(MTF)

ment

Fast change, great

high resolution data

Slow change, poor
camera, resolution
limiting

How fast does intensity
change at sharp edge?

camera, able to capture

Bright Side Normalized magnitude
7

/
/ Differentiation Fourier N
Transform 2
\
By

/
/ =

Dark Side ,;/

c—

_// Ne—
Frequency

Edge Spread Function Line Spread Function

Modulation Transfer Function

Figure 3. Computation of the Modulation Transfer Function using the knife-edge target.

Detection Quantum Efficiency
(DQE)

K2 Summit (super-resolution)
K2 Summit (counting)

DE-12 —

Falcon Il —

Falcon | —
F416

0.6 | US4000 — -+

0 0.2 04 0.6 0.8 1
Fraction of Nyquist

2

DQE — SNOU,t
SN2

DQE = 1, excellent camera, no loss of signal

Greater the Fraction of Nyquist, > resolution



Integrated vs Counted (super-resolution) Mode

Pixel
0.05 »779:10
0.10. 0.7 1
|
Incoming Electron  Integration mode Counting mode Super-resolution
Electron hits Integrating Assumes le in, le- Subdivides pixel to
pixel array and mode reads out out. Calculates give more accurate
causes charge accumulated most probably location of
spread charge in each location of electron hit.
pixel electron hit.

Nyqyist: maximum resolution of detector (2*px size)
represented by sine wave where 1px white, next black (smallest sampling frequency)



Lens Aberrations
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Deflect beam differently depending on:
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Spherical Aberration (Cs)
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FIGURE 6.12. Ray diagrams showing how the two different commercial systems use (A) multiple quadrupole (Q) and octupole (O) lenses (Nion) or (B)
hexapole and other transfer lenses (CEOS) to correct for C..

i —40 0 i x,y (um) ; I
Lenses are strongest at edge

Thus off-axis electrons bent Cs correctors available on some scopes
more than on-axis Important if imaging at 0.5A resolution

Different focus points



Chromatic Aberration (Cc)

I

|

|

| Electrons of different wavelengths are
I

| focused at different point

|

Cause of wavelength variation:
Electron source
Interaction with sample
(especially thick samples)

Correct using:
CFEG instead of Tungsten
Monochromator after gun
Energy filter after sample imaging




Energy Filter

Unfiltered

Pneumatic Entrance
Aperture

Retractable TV-Rate
Camera

Energy-Selecting Slit ‘

i
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Magnetic Prism Dispersion MultiScan CCD Camera
Magnifying Quadrupole

Quadrupole/
Sextupole
Lenses

20eV Energy Filter

Elaborate mass spec
Select for specific wavelength
Zero-loss imaging (elastically scattered waves)

EELS — Selects wavelength of inelastically
scattered rays — chemical composition




looks like a cormet

Coma

Beam enters lens at angle
Cs causes rays to bend depending on location
Point source becomes comet shaped

To correct: Apply +/- beam filt
FFT of opposite beam tilts should be identical

x tilt: +5 mrad y tilt: +5 mrad  x tilt: +5 mrad y tilt: +5 mrad

y tilt: -5 mrad x tilt: -5 mrad vy tilt: -5 mrad x tilt: -5 mrad



Suggested Reading

David B. Williams « C. Barry Carter

Transmission Electron
Microscopy

A Textbook for Materials Science

http://myscope.training/#/TEMlevel 2 4

Flash of TEM:
http://www.doitpoms.ac.uk/tlplib/tem/illumi
nation.php

http://cryo-em-course.caltech.edu/overview

Youtube

Second Edition

@ Springer




