BPM Button Design and Manufacturing Workshop

Diamond Light Source, May 2-3, 2019

Considerations for PETRA IV

Gero Kube

DESY (Hamburg)

- Introduction
- Overview and Particularities of PETRA IV
- Beam Instrumentation
- Considerations for BPM System

DESY Accelerator Complex

PETRA III @ DESY

• PETRA history

- ▶ 1978 1986: e⁺e⁻ collider (up to 23.3 GeV / beam)
- ▶ 1988 2007: pre-accelerator for HERA (p @ 40 GeV, e @ 12 GeV)
- since 2007: dedicated 3rd generation light source, commissioned in 2009 TDR: DESY 2004-035
 - \rightarrow 14 beamlines (15 experimental stations) operating in parallel
- from 2014: staged extension project W. Drube et al., 2016 <u>https://doi.org/10.1063/1.4952814</u>
 - \rightarrow *up to 12 additional beamlines* (presently not all of them in operation)

Extension Hall North Paul P. Ewald

Extension Hall East Ada Yonath

Max von Laue Hall

Gero Kube, DESY / MDI

PETRA III @ DESY

- consequence of re-using HEP structure
 - > large circumference
 - \rightarrow beamlines not all around the machine
 - \rightarrow small natural emittance
 - (+ space for damping wigglers)
 - different machine sectors
 - \rightarrow 8 arcs: L_{arc} = 201.6 m
 - \rightarrow 4 long straight sections: L_{lss} = 108 m
 - \rightarrow 4 short straight sections: L_{sss} = 64.8 m

• PETRA III concept

- > one octant with DBA lattice
 - \rightarrow 9 cells / arc, L_{DBA}=23 m

(P3X: 2 additional DBA cells in 2 octants)

- canted undulator beamlines: (14 out of possible 26)
 - \rightarrow canting angles 5 / 20 mrad
- remaining part: FODO lattice + dispersion suppressors

Parameter			
Energy	(6	GeV
Circumference	2304		m
Emittance (hor. / vert.)	1.2 / 0.012		nm rad
Total current	100		mA
Number of bunches	960	40	
Bunch population	0.5	12	$10^{10} e^{-1}$
Bunch separation	8	192	ns

Diffraction Limited Storage Ring

• "diffraction" limited

reduction of beam energy

PETRA III operated @ 3 GeV

 $\rightarrow \epsilon_x \approx 150 \text{ pm.rad}$

but: E defines radiation spectrum $\hbar\omega_c \approx 0.665E^2B$

- > reduce deflection angle θ per bending
 - \rightarrow from *double* bend achromat (2)

to *multi* bend achromat (5, 7, 9, ...)

- \rightarrow MAX IV paved the way
- \rightarrow others followed / will follow soon (SIRIUS, ESRF-EBS, DLS, ...)

PETRA IV

Gero Kube, DESY / MDI

DLS Design

Engineering Challenges

R.T. Neuenschwander et al., Proc. IPAC'15, Richmond (VA), USA, TUXC2, p. 1308

- basic idea \rightarrow dispersion function plays important role in determining equilibrium emittance
 - has to be kept focused to small values in dipoles
 - \rightarrow strong focusing quadrupoles between dipoles
 - \rightarrow strong sextupoles to compensate for chromatic aberrations
- strong sextupoles \rightarrow introduce nonlinear effects (beam dynamics)
 - reduction of dynamic aperture and clearance for injection
 - \rightarrow novel injection schemes
- strong magnetic fields
 - bore radius has to shrink
 - \rightarrow aperture for vacuum chamber reduced
- strong magnetic field gradients
 - high orbit amplification factors
 - \rightarrow orbit amplitude sensitive to magnet alignment errors
- high orbit amplification factors + small beam sizes
 - stringent tolerance requirements for magnet alignment + vibration amplitudes
 - \rightarrow tight tolerances for floor / girder vibrations

- vacuum system
 - small beam pipe aperture
 - \rightarrow reduced conductance of vacuum pipe
 - resistive wall impedance becomes issue
 - > may require new materials
 - \rightarrow higher el. conductivity
 - high orbit stability
 - pushing technology of
 - \rightarrow beam diagnostics
 - \rightarrow fast feedback systems, ...

PETRA IV: Timeline

• presently: preparation of *Conceptual Design Report*

Gero Kube, DESY / MDI

PETRA IV: Overview

1300 / 10

< 20 / 4

< 50 / 10

- use of old accelerator tunnel
 - \rightarrow HEP structure remains
- > asymmetric ring structure
 - \rightarrow reduced momentum / dynamic acceptance
 - (estimated: factor 1.5 2)
 - \rightarrow beam dynamics safely under control
- > no canted undulator beamlines forseen
 - \rightarrow strong emittance increase
 - \rightarrow additional experimental hall
 - (29 straight ID sections)

Diamond Light Source, Oxfordshire (UK), May 2-3, 2019

Gero Kube, DESY / MDI

Emittance (horz. / vert.) / pm rad

PETRA IV: Lattice

- extremely low emittances \rightarrow strong focusing required
 - consequence
 - \rightarrow large negative chromaticity has to be compensated
 - needs strong sextupoles
 - \rightarrow negative impact on nonlinear beam dynamics
 - \rightarrow strong decrease of dynamic / momentum aperture
- Hybrid-Multibend Achromat (HMBA)
 - based on 7-bend achromat

→ ESRF-EBS J. Biasci et al., Sync. Rad. News 27 (2014) 8

- creation of two dispersion bumps
 - \rightarrow inside bumps: three sextupole families installed
 - \rightarrow helps to significantly reduce sextupole strength
- cell length $L_{HMBA} = 26.2 \text{ m}$ (PETRA III: $L_{DBA} = 23 \text{ m}$)
 - \rightarrow beamline configuration of PETRA III cannot be preserved
 - \rightarrow 8 HMBA cells / arc

64 HMBA cells

further emittance reduction via reverse bends \rightarrow in discussion

- straight sections
 - > 4 with space for 10m-IDs
 - remaining straights
 - \rightarrow based on FODO structure

Gero Kube, DESY / MDI

PETRA IV: Operation Modes

from PETRA III to PETRA IV

Design Parameter	PETR	AIII
Energy / GeV	6	5
Circumference /m	23	04
Emittance (horz. / vert.) /pm	1300 / 10	
Total current / mA	100	
Number of bunches	960	40
Bunch population / 10 ¹⁰	0.5	12
Bunch separation / ns	8	192

timing structure

- general fill pattern 80 x Bunch Train \rightarrow
- bunch train duration: 96 ns
 - $\rightarrow 80 \times 96 \text{ ns} = 7.68 \ \mu\text{s} = \text{T}_{\text{rev}}$
 - brightness mode *Bunch Train* = 20 bunches \rightarrow 4 ns spacing + 20 ns kicker gap
- timing mode *Bunch Train* = 1 bunch
- injection scheme
 - swap-out on-axis injection
 - dynamic aperture on average **Extracted Beam** larger than 5σ of injected beam

	PETRA IV		
	6		
design goal:	230)4	
	< 20 / 4	<50 / 10	
,	200	80	
\times 65 smaller ε_x	1600	80	
	0.6	5	
	4 + gaps	96	
brig	ghtness mode	timing mode	

Gero Kube, DESY / MDI

PETRA IV: Life Time and RF System

- life time dominating process \rightarrow Touschek scattering
 - > elastic scattering in transverse plane with momentum transfer in longitudinal plane
 - \rightarrow depends on particle density in bunch
 - acceptable Touschek life times
 - \rightarrow bunch lengthening required
 - \rightarrow 3rd harmonic cavity system
- **RF** system \rightarrow fundamental RF frequency $f_{RF} = 499.665$ MHz (500 MHz)
 - > from PETRA III to PETRA IV
 - \rightarrow decrease of (i) energy loss / turn: 4.66 MeV \rightarrow 4.02 MeV, (ii) $\alpha_p = 1.20 \times 10^{-4} \rightarrow 1.485 \times 10^{-5}$
 - > reduction of required RF voltage from 20 MV to 8 MV
 - \rightarrow replace 12 (35 years old) 7 cell cavities by single cell cavities
 - HOM damped EU cavity F. Marhauser and E. Weihreter, Proc. EPAC'04, Lucerne (Switzerland), p.979

- \rightarrow 24 single cell cavities
- > 3rd harmonic system
 - \rightarrow 24 single cell cavities, $f_{RF} = 1.49$ GHz, U = 2.26 MV
 - \rightarrow active system seems to be essential

PETRA IV: Beam Instrumentation

- beam profile / emittance diagnostics
 - > 3 bending magnet (3-pole wiggler) beamlines
 - \rightarrow 2 for visible synchrotron radiation:
 - a) *Streak camera* for *bunch lengths* ($\sigma_t = 45.7 / 64.3 \text{ ps} \rightarrow \text{PETRA III:} \sigma_t = 41 \text{ ps}$)
 - b) *SR interferometer* for *beam size* (resolvable size not yet specified)
 - \rightarrow X-ray synchrotron radiation:

c) pinhole camera / Fresnel diffractometer for beam size (resolvable size not yet specified)

- ightarrow critical aspect \rightarrow resolution for transverse beam profiles
- beam current monitors
 - > commercial DCCTs (DC current) and passive beam transformers (bunch current)
 - \rightarrow critical aspect: heat load due to HOMs
- machine protection system / machine safety
 - including BLMs, online dosimetry, temperature control, ...
 - \rightarrow mainly based on systems developed for European XFEL, porting to new technical platform (μ TCA ?)
- parasitic bunch measurement, X-ray BPMs, ...
 - responsibility not yet defined...

beam position monitor system

PETRA IV: BPMs

- information available
 - number of BPMs
 - → 10 BPMs per HMBA cell (present status)
 64 cells, i.e. 640 BPMs in the arc section
 some BPMs in the straight sections
 - pickup chamber
 - \rightarrow arc section: round beam pipe, Ø 20 mm

first discussions started: reducing beam pipe diameter...

 \rightarrow ID section: not yet defined

undulator chambers something similar to PETRA III

- \rightarrow material: copper beam pipes (orbit feedback ???)
- \rightarrow mechanically fix points: connected via RF shielded bellows to vacuum chambers
- resolution
 - \rightarrow single bunch / single turn:

 $< 20 \ \mu m$ (assuming 0.5 mA in single bunch $\rightarrow 2.5 \times 10^{10}$ particles bunch)

 \rightarrow closed orbit:

< 100 nm (rms, 200 mA in 1600 bunches) at 300 Hz BW

Gero Kube, DESY / MDI

PETRA IV: BPM Resolution

• position determination in circular accelerator

$$\mathbf{x} = \mathbf{K}_{\mathbf{x}} \frac{(\mathbf{P}_{1} + \mathbf{P}_{4}) - (\mathbf{P}_{2} + \mathbf{P}_{3})}{\mathbf{P}_{1} + \mathbf{P}_{2} + \mathbf{P}_{3} + \mathbf{P}_{4}} \qquad \mathbf{y} = \mathbf{K}_{\mathbf{y}} \frac{(\mathbf{P}_{1} + \mathbf{P}_{2}) - (\mathbf{P}_{3} + \mathbf{P}_{4})}{\mathbf{P}_{1} + \mathbf{P}_{2} + \mathbf{P}_{3} + \mathbf{P}_{4}}$$

• position resolution (small displacements from center)

$$\sigma_{x,y} \propto K_{x,y} \frac{1}{\sqrt{SNR}}$$

 $K_{x,y}$: monitor constant SNR : signal-to-noise ratio

- depends on
 - pickup geometry
 - \rightarrow beam pipe diameter
 - button size

- > geometry
 - \rightarrow signal strength
- infrastructure
 - \rightarrow cable length & attenuation
- read-out electronics

PETRA IV: BPM Pickup Assumptions

• beam pipe

- > round, Ø 20 mm
 - \rightarrow monitor constant, first guess:

$$K_{x,y} = \sqrt{2}\frac{R}{2}$$

 $\rightarrow K_{x,y} = 7.1 \text{ mm}$

- BPM button
 - > diameter Ø 8 mm
 - \rightarrow boundary element method

X. Sun et al., Proc. IBIC 2017, TUPCF03

ESRF-EBS: Ø6/8mm

K. Scheidt, Proc. IBIC 2014, TUPF14

PETRA IV: TbT Single Bunch Resolution

machine studies at PETRA III

Libera Brilliance

• CDR: rely on Libera Brilliance+

PETRA IV: BPM Future Work

• button design

- recently started with CST simulations
- S. Strokov (TPU, Russia) and D. Lipka (DESY)
 - \rightarrow talk D. Lipka
- offset, calibration, ...
 - PETRA III strategy
 - \rightarrow buttons electrically checked beforehand and grouped in pairs
 - \rightarrow no electrical offset determination
 - \rightarrow no fiducial marks on pickups
 - > PETRA IV
 - \rightarrow have to be more cautious !!! (otherwise no circulating beam)
 - \rightarrow el. offset: so far assumed to use *Lambertson method*
 - \rightarrow hope to benefit from experience of others...
- heat load (HOMs)

- will be an issue for all monitors coupling capacitive/inductive
 - \rightarrow bad experience from PETRA III (damaged FCTs)

checked with beam (BBA)

(thanks to Kees for raising the issue...)

