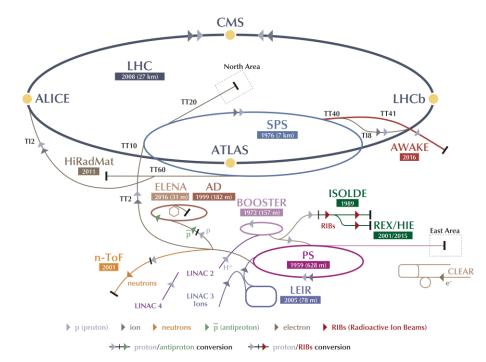
BPM vacuum sealing aspects

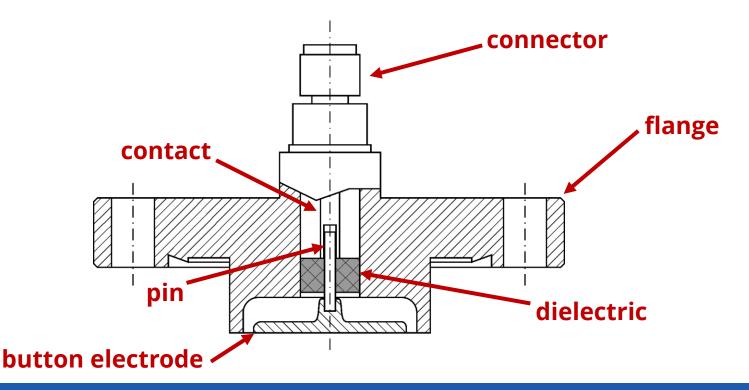
Michal Krupa 02/05/2019 BPM button design and manufacturing workshop


Outline

- Overview of BPM feedthroughs and buttons experience from CERN
- Available sealing techniques
- Flange and body material
- Connector type

BPMs at CERN

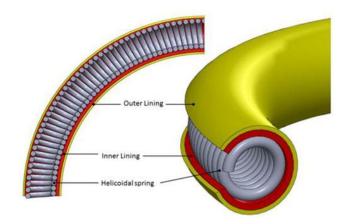
- 8 accelerators, 2 decelerators, 8 experimental areas
- Around 60 km of tunnels
- 2000+ BPMs of ~ 50 types
- BPMs physically quite large
- Long-term plans of even larger accelerators
 - FCC: 2000 BPMs
 - Full CLIC: 50,000 BPMs

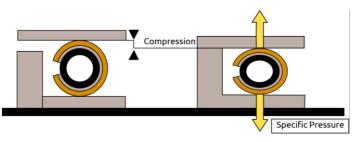

BPM vacuum sealing aspects

BPM feedthroughs at CERN

- Broad range of requirements
 - Frequency: 100 MHz ÷ 10 GHz
 - Vacuum levels: 10⁻⁸ mbar ÷ 10⁻¹² mbar
 - Operating temperature: -270°C ÷ +400°C
 - High-temperature bake-out
 - Radiation tolerance: 0 Gy ÷ 20 MGy (2 GRad!)
 - Order size: 10 units ÷ 1000s units
 - Varied connector type, flange type, materials etc.
 - Wide variety of acceptance criteria
- No "one size fits all" solution possible

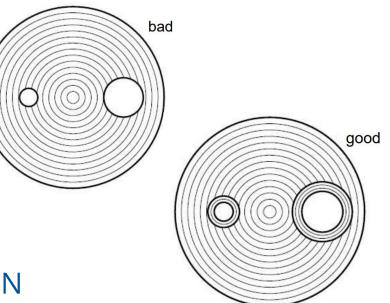
Typical BPM feedthrough / button


Vacuum sealing by welding or brazing


- Non-detachable connection to the BPM body
- Potentially excellent vacuum seal
- Never done at CERN for BPMs
- Very difficult to replace the feedthrough
- Very difficult to align the feedthrough

Spring loaded seals

- Plastic deformation of seal jacket
 - Greater ductility than the flange material
- A lot of advantages
 - Somewhat reusable
 - Proven cryogenic performance
 - "Arbitrary" shape
 - Reasonably forgiving material choice
 - Available commercially



Figures courtesy of: TECHNETICS GROUP

Spring loaded seals

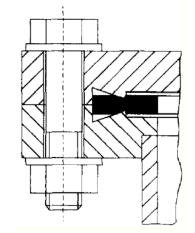
- Not a perfect solution
 - Relatively expensive
 - Limited supply chain
 - Controlled surface quality
 - Special machining
- Historically the go-to solution at CERN
 - Presently avoided

Concentric machining grooves

Figures courtesy of: VAT Vacuum Valves

Conflat flanges

- Metal gasket sandwiched between two precisely-machined knife edges
- Extremely versatile
 - Industry standard
 - Excellent UHV performance
 - Working over a vast temperature range
 - Complete in-house production possible
 - Fully adaptable
 - Exotic gasket materials for special applications
 - Custom shapes possible (e.g. rectangular)



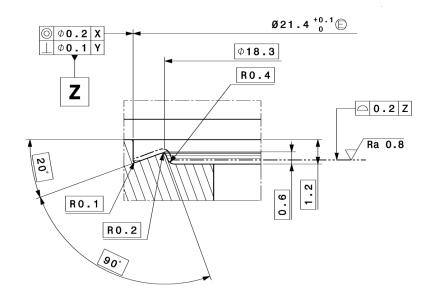
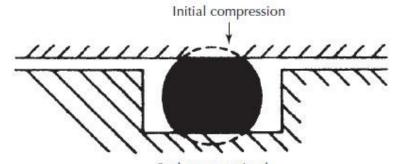


Figure courtesy of: Atlas Technologies

Conflat flanges


- More complicated than spring loaded seals
 - High-precision machining required
 - Fragile knife edges
 - Single-use gasket
 - Very difficult to re-machine
- Present default solution for new designs at CERN

Rubber gaskets

- Similar in concept to spring loaded seals
- Much simpler implementation: O-ring
- Reusable
- Variety of materials available
 - Application specific choices possible
- Economical choice with limitations
 - Outgassing at high temperatures
 - Risky at low temperatures
 - Limited tolerance to radiation
- Used at CERN but not directly on BPMs

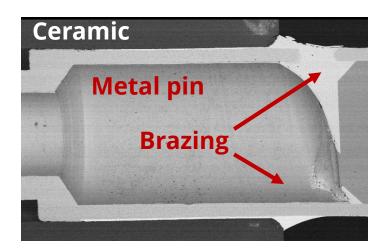
Seal unpressurized

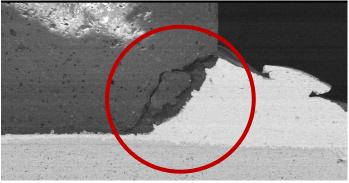
Flange material choice

- 316LN golden standard for feedthrough flanges
 - Low-carbon, nitrogen-enhanced 316
 - Very hard, resistant to corrosion
 - Low inclusion contents
 - Non-magnetic
 - Proven performance over a huge temperature range
- Expensive and hard to procure
 - CERN tries to help
- Even higher quality
 - VAR / ESR
 - 3D forging

Flange material choice

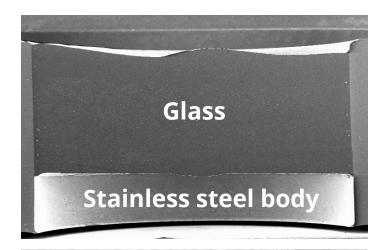
- 304L in some cases good alternative
 - Low-carbon 304
 - Resistant to corrosion
 - Higher inclusion contents
 - Magnetic high local μ_r
 - Brittle at low temperatures
- Readily available on the market
- At CERN used for vacuum vessels

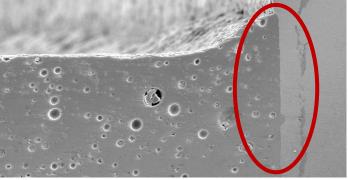

Flange material choice


- Titanium in principle a good choice
 - Very hard, resistant to corrosion
 - Non-magnetic
- Limited experience at CERN
 - Expensive
 - Different thermal expansion coefficient than BPM body
 - More complicated acceptance tests

Ceramic seals

- Popular solution
- $\varepsilon_r > 9$ limited RF performance
- Prone to cracks and fissures at cryogenic temperatures
- Less expensive than glass seals





Glass-to-metal seal

- Less popular than ceramic seals
 - Limited number of suppliers
- $\varepsilon_r \sim 4 \text{good RF performance}$
- Excellent adhesion to all surface blemishes
- Can be expensive

Importance of ε_r

Virtually impossible to do broadband compensation

CERN now offers 3D electromagnetic simulations for our contracts (NDA)

Figure courtesy of: Handbook of transmission line design

02/05/2019 BPM workshop

BPM vacuum sealing aspects

Central pin material

- Pin material proposed by the supplier
 - Strong and stable in temperature
 - Inconel seems to be the de facto standard
- Contact material specified by CERN
 - Strong and flexible (spring effect)
 - Good conductivity
 - 100s of mating cycles required
 - Secure fixing to the pin: welding preferred
 - Gold-plated CuBe (e.g. C17410)

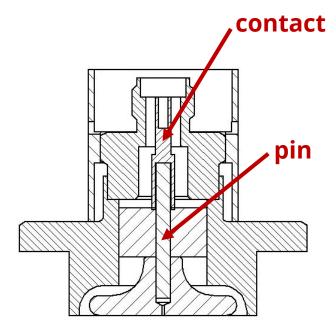


Figure courtesy of: SLAC

Connector type

- Type N advantages
 - Robust
 - Easy to handle
 - Bulky
- SMA advantages
 - Optimised for high frequencies
 - Smaller footprint
- So far only standard gender connectors used at CERN
 - Benefits of the reverse polarity?

Some example acceptance criteria

- All feedthroughs undergo vacuum acceptance tests
 - Performed by the Vacuum Group at CERN following their procedures, normally a large number simultaneously
- When appropriate the feedthrougs are subject to
 - RF characterisation with dedicated tooling and equipment
 - Cryogenic tests (usually LN2)
 - Mechanical tests
 - Metallurgical tests
 - Microscopic examination

Conclusions

02/05/2019 BPM workshop

BPM vacuum sealing aspects

Thank you for your attention

BPM vacuum sealing aspects

Michal Krupa 02/05/2019 BPM button design and manufacturing workshop

Special acknowledgements: C. Boccard, G. Schneider, M. Wendt

