The New X-ray Pair Distribution Function Beamline at Diamond Light Source

Phil Chater Beamline Scientist, XPDF (I15-1)

EPDIC15, Bari, Italy, 14/06/16 MS06: Progress in instrumentation

XPDF | Acknowledgements

- 🥺 diamond

- Heribert Wilhelm (PBS)
- Matt Tucker (now Oak Ridge)
- Michael Hillman (Mech. eng.)
- John Sutter (Optics)
- Dean Keeble (Support sci.)
- Michael Wharmby (PDRA)
- Tim Spain (SciSoft)
- Jakob Filik (SciSoft)
- Allan Ross (Senior tech.)
- Steve Usher (Tech.)
- Jon Thompson (Controls)
- Mark Booth (Data acq.)
- Paul Roberts (Elec. eng.)

- "ICINEL

- Riccardo Signorato
- Roberto Baruzzo
- 휟 Rigaku
- THALES SESO
- FMB Oxford
 - Steve Syme
 - Dave Barber
 - Nanna Heiberg
 - Abi Marchant
- Crystal Scientific
 - Simon Cockerton
- Andrew Goodwin (Oxford, UWG)

XPDF | New X-ray PDF beamline at DLS

- "...to produce robust X-ray PDF data in a user friendly, automated way"
- Study of short- and medium-range order in crystalline, semi-crystalline and amorphous solids and liquids
- Applicable to a wide range of disciplines, e.g.

2

- Materials chemistry
- Solid-state physics
- Earth sciences
- Pharmaceuticals

- High Q_{max}
 - Resolution of a PDF is dominated by Q_{max}
 - $Q = 2\pi/d = 4\pi \sin\theta/\lambda$
 - $\Delta r \approx 2\pi/Q_{\text{max}}$
 - Sample limited resolution if $Q_{\text{max}} > 3/(\langle u^2 \rangle)^{\frac{1}{2}+}$

- High Q_{max}
- High flux
 - X-ray form factors fall off dramatically with Q

- High Q_{max}
- High flux
- Low (and reproducible) background
 - Need to isolate the weak S(Q) signal from the sample
 - Compton scattering dominates at high Q

- High Q_{max}
- High flux
- Low (and reproducible) background
- Moderate Q resolution

- Low-r region unaffected by Q resolution

XPDF | Beamline layout

- Built within I15, but operated independently

XPDF | Beam characteristics

- Three fixed energies
 - Bent-Laue monochromator 🥼
 - Si (111), 40.0 keV, 0.310 Å
 - Si (220), 65.4 keV, 0.190 Å
 - Si (311), 76.7 keV, 0.162 Å
 - Horizontal focussing to 700 μm

XPDF | Beam characteristics

Three fixed energies

- Bent-Laue monochromator
 - Si (111), 40.0 keV, 0.310 Å
 - Si (220), 65.4 keV, 0.190 Å
 - Si (311), 76.7 keV, 0.162 Å
- Multi-layer mirror
 - Three multi-layer stripes
 - Bimorph substrate

Rigaku

THALES SESO

XPDF | Beam characteristics

- Three fixed energies
- Focal spot size 700 μ m (h) × 20 μ m (v) calculated
 - Smaller beams achieved with collimation
- Variable bandwidth
 - High flux mode
 - BW 1% (76 keV) to 2% (40 keV)
 - High resolution mode
 - Decrease BW at expense of flux
- Flux expected to be 10¹² ph/s

XPDF | Transmission geometry

– RA-PDF⁺ geometry data collection

[†]P. Chupas *et al., J. Appl. Cryst.,* **36**(6) (2003) 1342

- Detectors: Perkin Elmer a-Si TFT/CsI detector
 - Flexible detector positioning

- Detectors
 - Flexible detector positioning
 - "Symmetrical" PDF / Bragg

- Detectors
 - Flexible detector positioning
 - "Symmetrical" PDF / Bragg
 - -2^{nd} detector due December
 - PDF + Bragg

Low background

- Sample environments
 - 250 mm × 450 mm XY travel
 - Flat plate samples
 - Capillary spinners
 - Hot air blower (1200 K)
 - Cryojet (85 500 K)

- Sample environments
 - 250 mm × 450 mm XY travel
 - Flat plate samples
 - Capillary spinners
 - Hot air blower (1200 K)
 - Cryojet (85 500 K)
 - Electrochemical cells

XPDF | Beamline status

- First light in XPDF endstation on 8th April 2016
- First users on 14th April 2016
 - PDF data processed using Diamond's DAWN software
- Commissioning call should by end of June

XPDF | First data

- Un-focussed data, 76 keV
 - $-C_{60}$
 - 15 mins, 4 mm cap., symmetric collection, Q_{max} 22 Å⁻¹

XPDF | First data

- Un-focussed data, 76 keV
 - $-K_2PdBr_6$
 - 30 mins, 1 mm cap., offset diamond, Q_{max} 35 Å⁻¹

XPDF | First data

- First horizontally focussed data, 65 keV
 - $-Zn(CN)_2$
 - 64 seconds, symmetric collection, Q_{max} 25 Å⁻¹

XPDF | Next commissioning steps

- June-Aug. 2016

- Full characterisation of horizontal focussing

$-Q_{\rm max}$ optimisation

Detector	40.0 keV	65.3 keV	76.6 keV
$\overline{\mathbf{x}}$	17.4 Å ⁻¹	28.4 Å ⁻¹	33.4 Å ^{−1}
	[18.8 Å ⁻¹]	[30.8 Å ⁻¹]	[36.1 Å ^{−1}]
	21.5 Å ⁻¹	35.1 Å ^{−1}	41.2 Å ⁻¹
	[23.5 Å ⁻¹]	[38.4 Å ^{−1}]	[45.1 Å ⁻¹]

⁺Sample-to-detector: 200 mm Detector size : 409.6 mm × 409.6 mm

XPDF | Next commissioning steps

- June-Aug. 2016
 - Full characterisation of horizontal focussing
 - $-Q_{\max}$ optimisation
 - Background optimisation
 - Integration of I₀
- Sept.-Dec. 2016
 - Vertical focussing
 - Bandwidth selection
 - Integration of software

XPDF Software | Overview

XPDF Software | DAWN Processing

 PDF processing from 2D data has been included in the DAWN⁺ Processing Pipeline

⁺ Basham M., Filik J., Wharmby, M. T. *et. al. J. Synchrotron Rad.*, 2015, **22**, 853. [‡] A. K. Soper and E. R. Barney, *J. Appl. Cryst.*, 2012, **45**, 1314–1317.

XPDF Software | Live PDF data

 A 1D version of the pipeline will show PDF data in real-time (as its collecting)

Data shown at 40× the data collection speed.

XPDF Software | Robust PDF data

- Full 2D data processing is performed on the Diamond Cluster
 - Configurable container/sample environment corrections
 - Masking handled in 2D
 - Errors propagated from the 2D sample, empty and container data
- Beta version of XPDF Processing is already available in DAWN (<u>www.dawnsci.org</u>)

XPDF | Commissioning call

- Call should be open by the end of June
 - Spun capillary samples from 85 K to 1200 K
 - Sample changer for static capillaries / flat plates
 - Likely to be two time slots
 - July-Aug. 2016: Horizontal focussing only
 - Jan.-Mar. 2017: Fully focussed beam
- Full XPDF Software suite will still be undergoing commissioning, so users with some PDF experience recommended

The New X-ray Pair Distribution Function Beamline at Diamond Light Source

Thank you for your attention Questions?

XPDF commissioning call open SOON E-mail: xpdf@diamond.ac.uk : @xpdfdls