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Outline

e Solutions, non-crystalline materials

— Polymer chains, proteins

* Periodic systems
— Block copolymers
— Lyotropic liquid systems (surfactants; lipids)
— Mesoporous materials

* Orientation: powder-like or aligned



Reminder:




From James’ talk:
“Dimensionality” of different shapes

At Rg>q Scatteringtendsto I~q~?

< eSpheres (3D):a=4
° 1/g < Rg
%, 3< eDisks (2D): a=2
Thickness < 1/q < Radius
‘\< eRods (1D): a=1

Radius < 1/q < Length



Dimensionality of a polymer

chain in solution

* A (strongly) self-attracting chain would
pack itself into a baII thls would make a
sphere (3D; a = 4) ~ €

* A (strongly) self-repelI':'|ﬁngxchain would
stretch out into a completely extended
rod (1D;a=1) —~_



Neither attracting nor repelling?

____________

* Polymer in a “theta” solvent

— Interactions with solvent same as interactions
with self

fom == She) Ly
I TN o X 1< € M

* Polymer in the melt

(use neutrons)




Polymer chains that neither attract nor repel
themselves show a = 2. This corresponds to a
“random walk” (“Gaussian chain”).
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Random walks




Properties of a random walk

* N “steps” each of length |
* Expected end-to-end distance is | YN
* Expected Rg = | V(N/6)



Deviations from Random Walk

(Imagine a length of rubber tubing)

On a long enough size scale, it can behave
randomly

On a shorter size scale, because the tubing
isn’t infinitely flexible, bits of tubing close to
each other aren’t independent

On a size scale less than the “persistence
length” the tubing looks like a straight rod.



So, overall ....

I~6Xp(-Cq2)

Guinier 2

I~q -7

I~q

Random walk Thin rod




“Worm-like chain” (Kratky and Porod)

Kratky plot (see Rob and James’ talks)
If [~g~2
| g2 is a constant

Random walk
behaviour

Thin rod behaviour

——————

: q1 1S Inversely related to
q2 Rg, and 42 is inversely
’ related to persistence
length




More deviations from Random Walk

e At higher g (short length scale), the Kratky-
Porod Worm-like chain acted more like a rigid
rod (ie, self-repelling)

* Conversely, folded proteins with internal
structure are self-attracting at a short length
scale: see Rob’s talk



Self-att

™~

I~eXp(-Cq2

Guinier

racting short-range (eg proteins)

Random walk .~~~ Thin rod behaviour
Iq 2 behaviour (self-repelling)

Self-attracting




Summary so far

* With solution scattering, you can measure

— Size (R,) from Guinier plot in very small angle
region. Plot in 1 vs ¢

— Shape (dimensionality) from plot of in 1 vS1n ¢

— Persistence length; flexibility of polymer chain
(and extent of “random walk” behaviour) from
Kratky plot. Plot 142 against g



Task (1)

* Boffins at the Institute of Studies have, for the first
time, used science to produce “Polymer nano-Wotsits”

* |n a theta solvent, the polymer adopts a random walk
within a cylindrical envelope (as shown).

Discuss what you would expect to see in the scattering
pattern.



Periodic systems

* Regular repeating features on the 10-100nm
size scale are less common, requiring self-
assembly:

— Lipids / detergents (tens of nm)
— Diblock copolymers (hundreds of nm)

— Biological materials (eg keratin, collagen etc)
(hierarchical)

— Mesoporous materials (silica, metal...)



1D periodicity

* Bragg’s law: G\/d
f

nA = 2d sin0®

* Simplification:
X-ray reflections from
periodicity across the
beam.

[small-angle]



Flash cartoon: powder diffraction

http://www.personal.reading.ac.uk/~scsO5ams/xray_cartoon.html



Examples

e Lamellar Phase




More complexity

* Bragg Equation: nA =
2d sin®

— Higher order
reflections n=2,3,4...
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* How about 2D or 3D periodicity?
* Block Copolymers / surfactant / lipid phases



Periodic nanomaterials
o BIOCk COOlymerS: i :E. o LIpIdS (uinverse topologyn

liquid crystals):
Q\J’

B. W. Boudouris, Purdue

e Surfactants (“normal
iquid crystals):

diamond
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SAXS patterns from hexagonal phase

Structure:
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3D periodicity: cubic phases

B Diamond
7 N Pn3m
% (Space group 224)
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* Summary:

— Positions of reflections
* Lattice parameter
* Symmetry

ie structure factor

* Next:

— Intensity of reflections
* Electron distribution
 What shape is your repeating object

ie form factor



Pattern is Fourier Transform of Electron
density

* Any object (=distribution of electron density)
gives some sort of scattering pattern.

* This is an image of the Fourier Transform (FT)
of the electron density distribution.

* [See previous talks]



Real Space

Scattering Pattern (Fourier
Transform)

circle

BA Baracus




A periodic array of an object

[Eg a crystal]
Object: A

Lattice of
points

1D Crystal of an

w A crystal is the convolution
of a lattice of points with
whatever object is inside a
Crystal = Lattice * Object unit cell.

convolute



Smoke from one chimney CO nVO| Ution
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Real Space Scattering Pattern (Fourier

Transform)

Object

Lattice
of
points

_________________________________________________________

Object

NSNS

Crystal = Lattice ¥ Object FT(Crystal) = FT(Lattice) x FT(Object)

convolute



Points i BA Baracus’s




Summary

* Positions of spots / peaks ->Symmetry of
lattice

* Intensities of spots / peaks - Electron
distribution within one unit cell of lattice

Next:
* Width of spots / peaks > Finite number of
repeats (crystallite size?) 0%
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Q
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Real Space Scattering Pattern (Fourier

Transform)
Shape of Crystallite
Form factor of Crystallige

Infinite Lattice FT of infinite Lattice of points

s e Leee b Scattering pattern

Crystallite | | 5 MU

_________________________________________________________

FT(Crystallite) = FT(Lattice) * FT(Crystallite

(Crystallite) = (Lattice) x (Crystallite shape)
shape)

convolute



Crystallite size estimation

* Scherrer equation

Dimensionless shape factor Wavelength
(close to 1) \
KA
T = -
/ 3 cos 0 =~ Bragg angle
Mean crystallite size Line broadening
(units: as X) (fU” width half maximum)

(in radians)

* Note: broadening might also come from
instrument (beam shape); polydispersity



Summary

Relative positions:
symmetry

4]

z n Peak heights:

2.5 Electron density within

m© . . .

e unit cell (ie shape / size /

Z composition of each

- k/\/\ np

g cylinder)

= «—>

= 81

0 0.02 &
Peak widths:

Peak position: * Finite number of repeats
unit cell size OR
(lattice * Polydispersity

parameter) * Instrument: beam broadening



R ‘\_‘._\\\\ \\ l\!

e
t‘u’té&%.ﬁﬁ_{mm

oss : ST ,‘.l.\.(.i.\m‘
(:} 'tu"“g\&%..'ﬂj_l_.-‘ﬁfﬁ.-._ O, NN
NN PNy e e
Y by TR s L » Y

(A
n(&"::'&‘:ﬁ..'.&_1'_.-'m:.-.?.'.a'l::.?.;'_: BRIy s
n(u\{f@fi.:.ﬁ:s_{.-'ﬁ*e'- N, O

)
s
wﬁ‘é&‘ﬁﬁ..'.ﬂ_t‘_n_.rr.fe.:-.p.:r.'n:: %, S
e LD

(a)Add water: bilayers move further apart

(b)Add metal nanoparticles that don’t change spacing but adhere

to interface

Discuss qualitatively what the scattering pattern looks like and

how it changes



