Polymer systems and phase identification S4SAS 2014

Adam Squires

Department of Chemistry

University of Reading

Outline

- Solutions, non-crystalline materials
 - Polymer chains, proteins
- Periodic systems
 - Block copolymers
 - Lyotropic liquid systems (surfactants; lipids)
 - Mesoporous materials
- Orientation: powder-like or aligned

Reminder:

From James' talk: "Dimensionality" of different shapes

At Rg > q Scattering tends to $I \sim q^{-a}$

- •Spheres (3D): a = 4
 - 1/q < Rg

•Disks (2D): a = 2

Thickness < 1/q < Radius

•Rods (1D): a = 1

Radius < 1/q < Length

Dimensionality of a polymer chain in solution

 A (strongly) self-attracting chain would pack itself into a ball; this would make a sphere (3D; a = 4)

 A (strongly) self-repelling chain would stretch out into a completely extended rod (1D; a = 1)

Neither attracting nor repelling?

Polymer in a "theta" solvent

- Interactions with solvent same as interactions with self
- Polymer in the melt (use neutrons)

Polymer chains that neither attract nor repel themselves show a = 2. This corresponds to a "random walk" ("Gaussian chain").

Random walks

Properties of a random walk

- N "steps" each of length l
- Expected end-to-end distance is $l\sqrt{N}$
- Expected Rg = $l \sqrt{(N/6)}$

Deviations from Random Walk

- (Imagine a length of rubber tubing)
- On a long enough size scale, it can behave randomly
- On a shorter size scale, because the tubing isn't infinitely flexible, bits of tubing close to each other aren't independent
- On a size scale less than the "persistence length" the tubing looks like a straight rod.

"Worm-like chain" (Kratky and Porod)

Kratky plot (see Rob and James' talks) If $I \sim q^{-2}$ If q^2 is a constant

More deviations from Random Walk

- At higher q (short length scale), the Kratky-Porod Worm-like chain acted more like a rigid rod (ie, self-repelling)
- Conversely, folded proteins with internal structure are self-attracting at a short length scale: see Rob's talk

Self-attracting short-range (eg proteins)

Summary so far

- With solution scattering, you can measure
 - Size (R_g) from Guinier plot in very small angle region. Plot $In\ I$ vs q^2
 - Shape (dimensionality) from plot of In I vs In q
 - Persistence length; flexibility of polymer chain (and extent of "random walk" behaviour) from Kratky plot. Plot Iq^2 against q

Task (1)

 Boffins at the Institute of Studies have, for the first time, used science to produce "Polymer nano-Wotsits"

• In a theta solvent, the polymer adopts a random walk within a cylindrical envelope (as shown).

Discuss what you would expect to see in the scattering pattern.

Periodic systems

- Regular repeating features on the 10-100nm size scale are less common, requiring selfassembly:
 - Lipids / detergents (tens of nm)
 - Diblock copolymers (hundreds of nm)
 - Biological materials (eg keratin, collagen etc) (hierarchical)
 - Mesoporous materials (silica, metal...)

1D periodicity

• Bragg's law: $n\lambda = 2d \sin\theta$

Simplification:

X-ray reflections from periodicity across the beam.

[small-angle]

Flash cartoon: powder diffraction

http://www.personal.reading.ac.uk/~scs05ams/xray_cartoon.html

Examples

• Lamellar Phase

More complexity

- Bragg Equation: $n\lambda = 2d \sin\theta$
 - Higher orderreflections n=2,3,4...

- How about 2D or 3D periodicity?
- Block Copolymers / surfactant / lipid phases

Periodic nanomaterials

• Block copolymers:

hexagonal gyroid

B. W. Boudouris, Purdue

 Surfactants ("normal topology" liquid crystals):

 Lipids ("inverse topology" liquid crystals):

2D periodicity

3D periodicity

SAXS patterns from hexagonal phase

3D periodicity: cubic phases

Diamond Pn3m (Space group 224)

Gyroid Ia3d (Space group 230)

S. Akbar PhD thesis, Reading 2012

Summary:

- Positions of reflections
 - Lattice parameter
 - Symmetry

ie structure factor

Next:

- Intensity of reflections
 - Electron distribution
 - What shape is your repeating object ie form factor

Pattern is Fourier Transform of Electron density

- Any object (=distribution of electron density) gives some sort of scattering pattern.
- This is an image of the Fourier Transform (FT)
 of the electron density distribution.
- [See previous talks]

Real Space

Scattering Pattern (Fourier Transform)

circle

BA Baracus

A periodic array of an object [Eg a crystal]

A crystal is the *convolution* of a lattice of points with whatever object is inside a unit cell.

Real Space

Scattering Pattern (Fourier Transform)

Points

Circles

BA Baracus's

Summary

- Positions of spots / peaks →Symmetry of lattice
- Intensities of spots / peaks → Electron distribution within one unit cell of lattice

Next:

Width of spots / peaks → Finite number of repeats (crystallite size?)

[or other causes]

Real Space

Scattering Pattern (Fourier Transform)

Crystallite size estimation

Scherrer equation

 Note: broadening might also come from instrument (beam shape); polydispersity

Summary

Relative positions: symmetry

Peak heights: Electron density within unit cell (ie shape / size / composition of each cylinder)

Peak position: unit cell size (lattice parameter)

Peak widths:

Finite number of repeats

OR

- Polydispersity
- Instrument: beam broadening

Task (2)

- (a) Add water: bilayers move further apart
- (b)Add metal nanoparticles that don't change spacing but adhere to interface

Discuss qualitatively what the scattering pattern looks like and how it changes