CHM6201 Scattering from Polymers

Dr Patrick Fairclough

p.fairclough@sheffield.ac.uk

D50 Dainton Building

Semi-crystalline polymers

Thermoplastics

Semi-crystalline Polymers

- Most commercial thermoplastic polymers are part amorphous, part crystalline.
 - Semicrystalline.
 - Crystalline lamellae, separated by amorphous regions.
 - Gives the ability to maintain shape but resist impact.
 - On heating the lamellae melt and the polymer flows, usually with a high viscosity due to chain entanglement.

Lamella

- Crystalline and amorphous regions
- The crystal does not have perfect edges, they are made up of folded chains
- There is a small transition zone from pure crystal to amorphous (greatly exaggerated on this slide)
- In addition not all the lamella will be the same size.

Polymer morphology

• A semi-crystalline

 A sémi-crystalline polymer has a hierarchical structure.

- Some parts of the polymer chain crystallise.
 - These regions give rise to a WAXS (Wide angle X-ray, XRD) diffraction pattern.

- WAXS measures the interatomic spacings within the unit cell.
- The PE unit cell is orthorhombic (all angles 90° all sides different lengths).
- The plane separation for an orthorhombic cell is given by
 - a,b,c are the lengths of the sides.
 - h,k,l are the Miller indices of the planes.
- Different unit cells have different formula.

$$\frac{1}{d_{hh}^2} = \frac{1}{a^2}h^2 + \frac{1}{b^2}k^2 + \frac{1}{c^2}l^2$$

- The degree of crystallinity can be calculated from WAXS.
- The degree of crystallinity is related to the area under the crystalline and amorphous peaks.

- Therefore WAXS will give you structural information about the unit cell.
 - This is normally prior knowledge as most polymer structures have been determined. Its rare you get a completely new polymer to work on.
 - WAXS gives a check on the structure and points to preferred orientation of the crystal lamella and the degree of crystallinity.
 - To determine this you would run a Rietveld analysis.
 - The performs a fit to the pattern and determines a,b,c and the predicted intensities.

Peak Width

- The peak width increases
 - due to instrument resolution
 - if the crystals are under strain
 - If the crystal size reduces
 - Scherrer equation gives an estimate of the crystal size from the width of the peak.
 - β is the full width at half height
 - λ is the wavelength of the x-rays
 - t is the thickness of the crystal
 - And 2θ is the scattering angle
 - K is a constant close to one that accounts for the particle shape (usually about 0.95) for most systems.

$$\beta = \frac{K\lambda}{t\cos\theta}$$

- WAXS or XRD is the most common form of scattering you will encounter.
- The equipment is in most research labs.
- Most equipment will collect "powder" patterns.
 - That means it relies on there being no preferred orientation within the material.
 - This is a BIG problem for polymer materials
 - Any form of deformation results in chains becoming elongated.
 - Its much better to collect the full pattern if possible.

PEO Pattern

Which is correct?

PEO pattern

A f integration is a solution but you loose all the orientation information.

This corresponds to what the database says PEO looks like, but it tells you nothing beyond it is PEO

Polymer crystal structure

- WAXS is used to determine the crystal structure.
- The principle is basically that due to Bragg
- That a series of crystal planes gives rise to a scattering maxima (spot) in reciprocal space
- The position of these spots is given by the Bragg equation.

$$n\lambda = 2d_{hkl} \sin \theta$$

 λ is the wavelength n is the order 1,2,3,4... d_{hkl} is the interplanar spacing for indices hkl θ is the angle between the incident beam and the scattering plane, which is the same as the angle between the scattered beam and the plane.

θ or how to confuse things in scattering

- Often in WAXS the same notation is used for two different things the most common case is the use of the Greek symbol θ (theta).
- For Braggs law

or how to confuse things in scattering For SAXS

• The scattering angle is defined as 2θ .

In fact they are the same thing.

θ and 2θ Using simple trig.

- It is relatively easy to show that if the incident angle is θ then the scattering angle is 2θ .

Back to Bragg

- So the scattering maxima (reflections) are dependent on the layer spacing of the planes.
- These planes have different discrete spacings depending on the lattice geometry.
- This results in missing reflections and these tell you about the internal structure of the unit cell.

Braggs law

- The extra path ABC is dsinθ.
- If this is a integral number of wavelengths $(n\lambda)$
 - Then there will be constructive interference.
- Therefore, a given reflection can be indexed to a diffracting plane

Degree of Crystallinity

- If the Bragg peaks are from the crystal then you should be able to calculate he degree of crystallinity from the WAXS pattern.
- In principle this is possible however the accuracy is not that good and its best limited to comparable measures.
- SAXS, density and DSC give more reliable answers.

Degree of Crystallinity

- The idea is that you can break the scattering up into regions.
 - One from the crystals (C)
 - One from the amorphous (A)
 - And one from incoherent scatter. (IS)
- Then the ratio of C/(C+A) gives the degree of crystallinity.

Degree of Crystallinity

- The problem with this method is that its difficult to determine the exact curve of the incoherent scatter.
- Ruland does give a functional form
 - W. Ruland Acta Cryst 14 1180 (1961)
- But this is not exact.
- Therefore the method is best limited to comparing the effects of processing on a given material.

Degree of Crystallinity
The next option is to measure a

 The next option is to measure a completely amorphous sample (quenched from high temperature)

- Use this as a background to establish the correct form of the amorphous halo and the incoherent scatter.
- Then perform the calculation of crystallinity as before.

WAXS and Crystallinity

- Most people seem to think that WAXS is good at determining the degree of crystallinity
 - ITS NOT.
 - Because of the uncertainty in the incoherent scattering.
 - There have been many attempts to overcome this with varying degrees of success.
 - If I were asked to determine the degree of crystallinity I would use a DSC.
 - But of course this only works for a thermoplastic material, but most thermosets are amorphous anyway. In this case use SAXS and correlation function.

WAXS and Structure

- What WAXS is very good at is structure
 - Not the amount of structure
 - But what structures you have
 - How the atoms pack in the crystal
 - How big the crystals are
 - What orientation the crystals are in
 - What preferred growth directions occur in the crystals.
 - For this information POLE figures are required.
 - Pole figures have a reputation as a specialist technique and require a 3 circle goniometer for the diffractometer.

Orientation in polymers

- Terms:
 - For an extruded film:
 - Machine direction: Direction the film/fibre comes out of the extruder (MD)
 - Transverse direction: Perpendicular direction, parallel to the film surface (TD)
 - Normal direction: Perpendicular direction normal to the film surface (through the film) (ND)
 - For a blow moulded film MD and TD show similar orientation as the extension occurs simultaneously.
 - For stenter films MD usually shows more orientation than TD
 - For a cast sample
 - Flow direction: Not as well defined as for films as flow tends to be divergent in a die.
 - To determine orientation of crystals POLE figures are used.

Small Angle X-ray Scattering

SAXS

(Small Angle X-ray Scattering)

- SAXS can measure the lamella spacing in a semicrystalline polymer.
 - SAXS can do much more but due to time limitations this will be the main subject.
- SANS can also measure it.
- The position of the diffraction maximum is related to the lamella d spacing.
- The larger d the smaller the angle the scattering appears at.

SAXS

- In SAXS you would normally measure the scattered intensity (I) as a function of q rather than θ (angle).
- Usually q has units of Å⁻¹ or nm⁻¹ (reciprocal Angstrom or reciprocal nanometres)
 - $1\text{Å} = 10^{-10}\text{m} \text{ (Angstrom) } 1\text{Å}^{-1} = 10^{10}\text{m}^{-1}$
 - $1nm = 10^{-9}m$

Guinier Model

- Ideal Chain (in the melt or in solution)
 - Freely jointed chain
 - Self avoiding random walk
 - Restricted bonds
 - Real chain

Polymer Coil

- The simplest model of a polymer is the freely jointed chain. Here the bond angles can be any value (even o°).
- It's chemically not particularly accurate but it does give a reasonable model of the size and shape of a polymer molecule.
- R_G is the radius of gyration, and measures the average distance from a point on the chain to the centre of mass.

$$P(q) = \frac{2}{\left(q^2 R_G^2\right)^2} \left(e^{-q^2 R_G^2} + q^2 R_G^2 - 1\right)$$
Debye (1947)

Guinier Approximation

- For qRg<<1 (very much less than 1, i.e. o.1 or less)
- Clearly the intercept is only valid if the Intensity units are absolute.
- You can calculate the size of the chain in solution.
- SANS: You can calculate the size of a hydrogenous polymer in a deuterated one: Natural size of the polymer.
- Gradient gives -Rg²/3

$$\ln(I(q)) \approx \frac{-q^2 R_G^2}{3} + M \frac{\phi(\eta)^2}{N_A \rho}$$

scattered intensity for a melt of h- and dpolystyrene (from Schwahn, 1991 using SANS) Lamella Semi-crystlline.

- SAXS measures the d spacing (d in the picture)
- The crystal does not have perfect edges, they are made up of folded chains
- There is a small transition zone from pure crystal to amorphous (greatly exaggerated on this slide)
- In addition not all the lamella will be the same size.
- As a result the SAXS peak is broadened.
- To determine the crystal morphology the correlation function is used.
 - See Strobl, G. R. and Schneider, M. J., *Polym. Sci.* (1980) 18, 1343-1359
 - Also Strobl: The Physics of Polymers: Concepts for Understanding Their Structures and Behavior

Scattering close to beam stop not a real peak

Lorentz Correction

- There is a problem with scattering from 1 D stuff.
- Scattering is a 2D representation of a 3D system.
- Therefore the I(q) data from SAXS will give the wrong structural information.
- To resolve this issue the data must be multiplied by q²first.
- This is termed the Lorentz correction.

Lorentz Correction

D spacing from this peak

Weak second order can now be seen

$$D=2\pi/q^*=2\pi/0.045=155\text{Å}$$

SAXS

- But just finding the d spacing tells you very little and you are throwing away a lot of information if this is all you do.
- To extract more information you should run a correlation function analysis.

Correlation function The one dimensional correlation

- The one dimensional correlation function is useful for determining the structure of a semi-crystalline polymer.
- It assumes that the scattering is due to a linear arrangement of lamella stacks.
 - While this may not always be the case it can still be applied to most semicrystalline polymers.

Mean density

Correlation function

- As the system only shows contrast in the z direction that's all we need to be concerned with.
- We need to perform a Fourier transform on the scattering data to obtain the correlation function.

$$K(z) = \frac{1}{k} \int_{\infty}^{0} e^{iq.z} 4\pi q^{2} I(q) dq$$

Symmetry

- As the structure is periodic in the z direction we can fold it in half and simplify the maths.
- This cosine transformation relies only on the fact that the structure is periodic.

$$K(z) = \frac{1}{k} \int_{-\infty}^{\infty} e^{iq \cdot z} 4\pi q^2 I(q) dq$$
$$= \frac{2}{k} \int_{0}^{\infty} \cos(q \cdot z) 4\pi q^2 I(q) dq$$

Correlation function 1

$$Q = \phi_c (1 - \phi_c) (\overrightarrow{\rho}_{ec} - \rho_{ea})^2$$

$$-B = \phi_c^2 (\rho_{ec} - \rho_{ea})$$

 $Q = \phi_c (1 - \phi_c) (\rho_{ec} - \rho_{ea})^2 \begin{array}{l} \rho_{ec} \text{ is the crystalline election density} \\ \rho_{ea} \text{ is the amorphous electron density} \\ \phi_c \text{ is the volume degree of crystallinity} \end{array}$ ρ_{ec} is the crystalline electron density

> Q has a maximum at 50% crystallinity, this means that you can't tell the difference between 40 and 60%.

Similarly you cannot distinguish between the amorphous and crystalline d.

However DSC or WAXS should give you a clue.

Correlation function 2

Correlation Function 3

Slope gives Oac the "specific internal surface". Area per unit volume of the interface separating crystalline and amorphous regions.

Block Copolymers

Block Copolymers

- Chemically linked polymers
 - Polymers phase separate
 - Linked so separation is limited
 - Microphase separated
 - Domains are few nanometers in size
 - Heat them up and they mix → ODT
 - If Mn is not too big

AB-Diblock copolymer phases

Khandpur et al Macromolecules 1995

Lamellar

0.10

0.05

-0.05

q_x/Å⁻¹ 0.00~

Hexagonal

• $q^*, \sqrt{2} q^*; \sqrt{3} q^*; \sqrt{4} q^*$

BCC Cubic

- $I(q)=S(q)P(q)\eta^2$
- BCC "sum is even"
- $110 = q^*$; $200 = \sqrt{2} q^*$;
- 211 = $\sqrt{3}$ q* etc...

la3d "gyroid"

Order to Disorder

- Not always this clear
- Glassy: eg PS tends to produce broad peaks that change slowly.
- Why only one peak
- Interface: sine wave

ABC phases

- ABC triblock.
- Stamp collecting to some degree
- But good for volume of papers.

Reference Books

- Leroy E. Alexander: X-ray Diffraction Methods in Polymer Science
- Otto Glatter and Kratky: Small Angle X-ray Scattering
- H.P. Krug and L.E. Alexander X-ray Diffraction Procedures
 - All of these are old and out of print.
 - But any good library will stock at least two of the three.
- I have yet to find a good new book (one still in print) on the subject.
 - Methods of X-ray and Neutron Scattering in Polymer Science (Topics in Polymer Science S.)
 by Ryong-Joon Roe is OK
- Light Scattering: From Dover publications old but still available:

The End

Patrick Fairclough p.fairclough@sheffield.ac.uk