From 2D images to 3D density maps I

Single Particle Analysis

C H S Aylett - 04/2021

Single particle analysis - 2D

2D? We want pictures - we take pictures ... right?

Image

X / Y grid of electron impact counts per frame

Dose

Limited to a bare minimum by radiation damage

Noise

Assumed Gaussian - mostly caused by low dose

Signal

Unknown or assumed - identified by comparison

SNR

Increases with square root of number of images

CTF and PSF affect averaging

Fourier image = Signal • CTF • PSF + Noise

Images cannot be averaged due to CTF

The Wiener filter

Fourier space averages of ... 0.8 0.6 .99 0.8 0.4 0.6 0.2 . 98 ۵ -0.2 0.4 .97 -0.4 -0.6 0.2 .96 -0.8 -1 . 95 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 0.02 0.08 0.1 0.12 0.14 0 0.04 0.06 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Resolution (1/Angstroms) Resolution (1/Angstroms) Resolution (1/Angstroms) Wiener filtered Contrast flipped Unprocessed

Wiener filtered Fourier image Input Fourier image

CTF CTF² + SNR⁻¹

Correction of Fourier amplitudes allows averaging

Centre of rotation - picking

Two-steps to simplify process: picking / refinement

Quantifying image similarity

Correlation predominantly replaced by likelihoods

Alignment - x / y (+ frames), z (CTF)

Entire process defined by a few parameters

Alignment - angle of rotation

Lossy interpolation required for rotation

Iterative refinement to yield the aligned average

Well-behaved process which generally converges

Heterogeneity - causes

Compositional and conformational vs. angular

Heterogeneity - K-means classification

Extensible family of emergent classifiers

Heterogeneity - principal component analysis

More complex but more powerful classification

2D averaging - model / results

High resolution averages of preferred orientations

3D reconstruction - the problem

- classically "ill-posed" and requires regularisation

3D reconstruction - regularisation

Assumptions - smooth / complete / initial volume

Iterative refinement in 3D

Two more angles - Initial volume required

Overfitting and filtering - half sets

Full independence required to avoid overfitting

Initialisation - stochastic gradient descent

Stochastic gradient descent (SGD) enables ab initio cryo-EM structure determination

Space of all 3D structures

Like "Simulated annealing" - can be wrong / hand

Initialisation - random conical tilt

Assign angles from two different images of sample

Initialisation - tomography

Best approach - no requirements or caveats

Heterogeneity - reference based classification

K-means family - masking / without alignment

Heterogeneity - multiple bodies vs. deep learning

New techniques being tested and optimised

Hand

Tilt pairs are low resolution / structure at high

Global resolution and sharpening

Limit interpretation to their consistent resolution

Local and directional resolution

Artefacts must be removed before interpretation

Biological chemistry

Biological chemistry is your best validation

Many thanks to Kyle Morris for the invitation to talk, Colin Palmer, Tom Burnley, and Helen Saibil for kindly providing diagrams for slides, and to everyone else for listening!

Imperial College London

THE ROYAL SOCIETY

wellcome