Macro-Molecular Fiber Diffraction Tom Irving BioCAT, CSRRI and Dept. BCS, Illinois Institute of Technology #### Why Fiber Diffraction? - Atomic level structures from crystallography or NMR = "gold standard" for structural inferences - But there is a large class of "fibrous proteins" e.g: actin, myosin, intermediate filaments, microtubules, bacterial flagella, filamentous viruses, amyloid, collagenous connective tissue - Will not crystallize but can be induced to form oriented assemblies - Some systems *naturally* form ordered systems #### Dimensional hierarchy of Biophysical (X-ray) techniques 1D Low angle solution or powder diffraction large macromolecular assembles #### 2-3D Fiber diffraction fiber forming arrays – muscle, collagen, DNA, amyloids, various carbohydrates, often *super-macromolecular scale* #### 3D Single crystal X-ray diffraction anything that can crystallize, must be (initially) soluble, usually relatively small in comparison to the above, *molecular to macromolecular scale* ### Potato virus X ### Insect flight-muscle # Engineered amyloid fiber #### Tobacco mosaic virus ### Fiber Diffraction Theory Fibers (essentially rods/cylinders) usually hexagonally packed ### Hexagonal Lattice variables ### **Ewald Sphere** # End on view of hexagonal reciprocal lattice #### Fiber Cross-section Diffraction X-rays Crystallites randomly orientated around the axis perpendicular to the fiber axis (the $\mathbf{R'}$ – axis: Sum of Rotation of crystallites assumed = 360 degrees) Fiber diagram - Insect Muscle (hexagonal lattice) ### Geometry of Fiber Patterns 15 ## B-form DNA - Non-crystalline ### Insect flight-muscle - crystalline # Fibrous Proteins Usually Show Helical Symmetry P = pitch p = subunit axialtranslation distance R = true repeat distance # Diffraction from a continuous Helix ### Bessel Functions and Layer lines Transform of a cylinder ## Diffraction From a Discontinuous Helix **Figure 3.17** Generation of the form of the diffraction pattern from an 18/5 α-helix. Such a helix (c) can be considered as the product of a continuous helix of pitch 5.4 Å (a) and a set of density planes spaced 1.5 Å apart (b). The helix cross diffraction pattern (d) from (a) needs to be convoluted with the diffraction pattern from (b), a set of meridional points (e), to give the diffraction pattern (f) from the α-helix. Strong reflections occur on layer lines for which l is 5, 13, and 18. A set of points that are regularly spaced along a helical path # Diffraction From a Discontinuous Helix Figure 3.17 Generation of the form of the diffraction pattern from an 18/5 α-helix. Such a helix (c) can be considered as the product of a continuous helix of pitch 5.4 Å (a) and a set of density planes spaced 1.5 Å apart (b). The helix cross diffraction pattern (d) from (a) needs to be convoluted with the diffraction pattern from (b), a set of meridional points (ε), to give the diffraction pattern (f) from the α-helix. Strong reflections occur on layer lines for which l is 5, 13, and 18. A set of points that are regularly spaced along a helical path #### Diffraction from a helix: comparison The main effect of shifting from a continuous to a discontinuous helix is to introduce new helix crosses with their origins displaced up and down the meridian by a distance 1/p #### Helical Selection Rule Which Bessel function order will turn up on what layer line for a more complicated helix? For a non-integral helix (repeats after two or more turns), with **u** subunits in **t** turns, allowed Bessel functions on layer line *l* are: $$l = m.u + n.t$$ **m** is an integer indicating translational periodicity index of helix lattice ### Crystals of Helical Molecules #### Multi-Stranded (coiled coil) Helices ## Fiber Diffraction Often Just Used to Find Gross Molecular Parameters - In many cases one can make structural inferences without a full-blown structure solution - Helical parameters in Polyamino-acids and nucleic acids - Topology of viruses and other large molecular complexes - Test hypotheses concerning influence of interfilament lattice spacing ## Rosalind Franklin's Pattern from B- #### DNA Layer lines (L) separated by 34 Å nm Meridional (M) reflection at $3.4 \, \text{Å}$ => 10 residues/turn ## Diffraction from Poly L-Alanine -α-helix 1.5 Å/residue Pitch 5.4 Å 18 residues/5 turns Layer lines every $(5.4* l/5)^{-1}$ l = m.u + n.t l = 18m + 5n #### X-ray reflections: direct test of hypothesis and de Tombe. *AJP* 279: H2568-H2573, 2000. $Video \Rightarrow SL$ ## Lattice spacing in skinned rat trabeculae shrinks with increasing sarcomere length Myosin heads on the thick filaments move inwards or outwards when muscle changes length ## Layer Lines Allow Direct Measurement Radius of Heads Position of maxima on layer lines inversely proportional to radius to the center of mass of myosin heads ## Myosin layer lines show inward radial motion of myosin heads with stretch #### Summary Increased calcium sensitivity at long SL is due to a more perpendicular orientation of the myosin heads # Meridionals Allow Measurement of Strain in Fibers In this example the 6th order meridional reflection from myosin in skeletal muscle was used to measure elastic strain in the myosin containing thick filament # Fiber Crystallography - Most fiber "structures" result of model building studies - There have been a small number of Fiber "structure solutions". - High resolution structure by Keichi Namba on bacterial flagella (Yamashita et al., 1998 Nature SB) aligned by high magnetic fields - Orgel et al. (2001 Structure) published first MIR structure of a natural fiber Type I Collagen from rat tail collagen Collagen type I subfibrillar structure Orgel et al., 2006, Proc Natl Acad Sci. 103: 9001–9005. # Data Analysis for Fiber Diffraction Tom Irving BioCAT, CSRRI and Dept. BCPS Illinois Insitute of Technology # Existing Tools for Fiber Diffraction Analysis - Tradition of "rolling your own" software - Community small so relatively difficult to get support behind new large-scaledevelopments - There are several packages useful for fiber diffraction - Difficulty of obsolescence of existing packages - Badly need new developments! ## Useful packages #### • Fit2D - Pros: - generally useful and very powerful package for analysis of general diffraction programs - Supports many detector formats - Supports macros - Runs on Windows and Linux (Mac's sort of) #### Cons - Hasn't been recompiled in 8 years - Documentation inconsistent most powerful features least well documented - Not supported, future uncertain ## Fit2D - Things to watch for: - Intensity projections plot AVERAGE values not SUMMED - The dreaded "X-pixel size bug" ### **Fibrefix** - Outgrowth of CCP13 project - Pros: - Comprehensive package for analysis of crystalline fibre diffraction patterns - Unique background subtraction tools #### Cons - Less useful for continuous diffraction data - Relatively difficult to use - Not amenable to automation - No longer maintained - Needs .NET framework 1.1 risk of obsolescence # Background Subtraction with Fibrefix Raw pattern Quadrant folded and Background subtracted ### WCEN • Developed Gerald Stubbs group, Vanderbilt university #### • Pros: - Nice data visualization tools - Cool "Healing" tool for detector defects - Good for continuous fiber diffraction - Still being actively maintained - Works Macs and Linux #### • Cons: Not widely used yet so very small user base ## ImageJ Powerful general purpose image processing package #### • Pros: - Written in Java easily extensible - Well supported at NIH and Community - Nice image rotation tools, lookup tables #### Cons None really, no diffraction specific tools ## Fityk - http://www.unipress.waw.pl/fityk/ - Pros: - Powerful curve fitting package with many built in functions - User defined functions - Functionality available as a python library - Cons: - Needs more flexible input/output # Workflow in Irving Lab - Background subtraction in Fibrefix (optional) - Distance measurements and 1D traces in Fit2D - Pattern splitting, background subtraction Chiplot. Analyze.py - Curve fitting in FITYK - Data extraction into .csv files from Fit2d and Fityk log files using custom perl scripts - Use ImageJ for image rotations and preparing figures for publication ### The Future - New tools incorporated in GDA - Integrated workflows at the beamline to yield partially or reduced data - Suggestion has been made to develop some tools in the context of ImageJ plugins - GDA is an inherently JAVA based environment - ??? ## References #### • Basics: C. Cantor and P. Schimmel "Biophysical Chemistry part II: Techniques for the study of Biological Structure and Function" Chapter 14. Freeman, 1980 #### • A terrific introduction: John Squire "The Structural Basis of Muscular Contraction" Plenum, 1981 #### • Definitive Reference: B.K. Vainshtein "Diffraction of X-rays by Chain Molecules" Elsevier, 1966. ### More references: Good introduction to "Fiber crystallography": Chandrasekaran, R. and Stubbs, G. (2001). Fiber diffraction. in *International Tables for Crystallography, Vol. F: Crystallography of Biological Macromolecules* (Rossman, M.G. and Arnold, E., eds.), Kluwer Academic Publishers, The Netherlands, 444-450.