A new alignment system to enable the face side inspection of synchrotron optics

The challenging demands on ultra-precise reflective optical elements for beamline application at $3^{\text {rd }}$ generation storage rings like BESSY-II and PETRA-III, or at Free Electron Laser Sources like LCLS and the European XFEL require a shape preserving alignment of such components.
Thus the inspection of mirrors in the face side condition is an essential topic to characterize high performance synchrotron mirrors as well as the mechanic clamping systems used. For this reason a mechanical alignment system was developed based on the principle parallel kinematics for nanoscale cartesian motions [1;2]. This new alignment system [figure 10] is installed at the BESSY-NOM [3] in the BESSY-II optics laboratory of the Helmholtz Zentrum Berlin (HZB) since end of 2010. Deformation of the optics caused by the mirror clamping as well as the influence of gravitational effects can be measured.

Principle: parallel kinematics for cartesian motions

Due an interaction between the movements of 6 kinematic rods: aligned with respect to Cartesian axes, variable in the lenght, pivot-mounted, individually adjustable, a system with all degrees of freedom (3 rotations about the Cartesian axes and 3 translations along these axes) are implemented.

Measurements on a plan mirror for PETRA-III at DESY

Figure 5: comparison of absolute height

Figure 6: comparison of profiles of residual heights

Figure 7: comparison of profiles of residual slopes

Design and Performance

Figure 8: design of alignment system (back view)

Figure 10: the alignment system (back view)

Figure 9: design of alignment system with optics

Figure 11: the alignment system (front view)

- Rods realized due ropes prestressed by springs[5]

Inspection of large optics up to 1000 mm in lenght and 120 mm in width - adjustable range: $\pm 5^{\circ}$ for rotation; $\pm 10 \mathrm{~mm}$ along the y-axis positioning resolution: 5arcsec for rotation; $11 \mu \mathrm{~m}$ for translation - relaxation time: 24 h after initial alignment

[^0]Jana Buchheim
ana.buchheim@helmholtz-berlin.de

[^0]: 1_Tino Noll, Karsten Holldack, Gerd Reichardt, Olaf Schwarzkopf, Thomas Zeschke, Parallel kinematics For nanoscale Calt
 -T. Noll, W. Gudat, H. Lammert, WO 02/16092 A1 Device for Multi-Axis fine Adjustable Bearing of a Component (2001) AIP CONFERENCE PROCEEDINGS Volume: 705 (2004)
 4-Tino Noll, Elastische parallelkinematische Füh hungsgetriebe für ultrapräzise Bewegungen im Vakuum, thesis (2003),
 5_EP 165059 B1/DE 102004052155.7 Justiervorrichtung zur hochgenauen Positionierung eines
 S_Samuel K. Barber, Gregory Y. Morrison, Valeriy V. Yashchuk, Mikhail V. Gubarev, Ralf D. Geckeler, Jana Buchheim, F ©_Samuel K. Barber, Gregory Y. Morrison, Valeriy V. Yashchuk, Mikhail V. Gubarev, Ralf D. Geckeler, Jana Buchheim,
 Developmental long trace profiler using optimally aligned mirrorbased pentaprism, Proc. of SPIE, Vol. 7801-2 (2010)

