SAXS Basics for BioSAXS

Robert P. Rambo Diamond Light Source B21

Scattering and Size

Why is the sky blue, why is the sunset red?

Scattering

Effects of size on angular dependence

if $R_g \ll$ wavelength (or scattering angle) isotropic scattering \Rightarrow angular independence

Use this type of scattering for:

- determining molecular mass
- assessing monodispersity

	Rg	mass, kDa
ribosome	80-ish	2,000
glucose isomerase	30-ish	173
xylanase	l 5-ish	22
P4-P6 domain	30-ish	52

Small change in intensities at 690 nm Use X-rays to get a bigger angular dependence

Scattering from a Single Atom

hv: 8 to 12 keV (1.55 to 1.03 Å) flux: 10⁸ (home source) to 10¹² photons/sec (synchrotron: B21 10¹¹ photons/sec)

- Photons are scattering with no change in wavelength (Thompson/Debye/Rayleigh elastic scattering)
- ~ 1% incident photons are scattered

The Scattering Angle

$$q = \frac{4\pi \cdot \sin(\theta)}{\lambda}$$

- q is a vector (momentum transfer vector)
- independent of distance to detector and wavelength (λ)
- units are Å⁻¹
- defines scattering curve in reciprocal space

if q was defined only by heta , then scattering angle would be λ -dependent

Scattering is described by a form factor: describes the amplitude of a scattered wave as a Fourier transform of an object's spatial distribution

Molecular Form Factor

$$A(q) = \int \rho(r) \times e^{iqr} dV$$

spatial distribution

Fourier term Note: r is in fixed orientation

Pair-distance Distribution Function

internal

Set of all distances measured within the particle.

$$\sum_{distances} = \sum r_{ij} = \int \rho(r) dr$$

$$V_{particle} = \int_{0}^{d_{max}} \rho(r) dr$$

implies $p(r)$ has units of Å²

$$\rho(r) = r^{2}\gamma(r) \qquad \gamma(r)$$
: correlation function

- defined in real space
- no negative values (\mathfrak{R}^+)
- zero except for defined distances
- expected to be smooth as $r \rightarrow d_{max}$

- Knowing P(r):
 - I. Determine V_{particle}
 - 2. R_g (real space)
 - 3. Correlation function

$$R_g^2 = \frac{1}{2} \cdot \frac{\int r^2 \cdot \rho(r) \, dr}{\int \rho(r) \, dr}$$

Debye factor

In SAXS:

- particles are not centered at origin
- particles are sampled in all orientations

$$exp\{-2\pi i(\mathbf{q}\cdot\mathbf{r})\} \Rightarrow (exp\{-2\pi i(\mathbf{q}\cdot\mathbf{r})\})_{average} = \frac{sin(\mathbf{q}\cdot\mathbf{r})}{\mathbf{q}\cdot\mathbf{r}}$$

$$I_{particle}(q) = V \cdot \int_{0}^{d_{max}} \rho(r) \cdot \frac{sin(q\cdot r)}{q\cdot r} dr$$
Pair-distance distribution function
$$p(r) = 0 \text{ when } \mathbf{r} > d_{max}$$

$$Pair-distance distribution function$$

$$p(r) = 0 \text{ when } \mathbf{r} > d_{max}$$

Scattering by an Inhomogeneous Solid, Debye P and Bueche AM. 1949 Journal of Applied Physics

Correlation Function

Maximum self-correlation occurs at r = 0Correlation decays to 0 at $r > d_{max}$

$$l_c$$
, mean width of Y(r) $l_c = rac{l_{ave}^2}{l_{ave}}$

SAXS

Geometry of a Scattering Experiment

In a real experiment, scattering contributions from:

- 1. sample cell
- 2. solvent
- 3. air

Correct for above by buffer subtraction:

- need at least 1 SAXS measurement of "buffer" sample
- subtract from SAXS data sample

Debye Method

Buffer Subtraction

Using a distance vector:

$$r = \frac{2\pi}{q}$$

Randomly through **r** in and make note of its ends and count.

Several end-to-end pairs:

I. $n_{p} : n_{s}$ 2. $n_{s} : n_{s'}$ (intra) 3. $n_{p} : n_{p'}$ (intra) 4. $n_{p}^{i} : n_{p}^{i}$ (inter)

$$\sum_{n_s:n_{s'}} f_s \cdot f_{s'} \frac{\sin(qr)}{qr}$$
$$\sum_{n_p:n_s} f_p \cdot f_s \frac{\sin(qr)}{qr}$$
$$\sum_{n_p:n_s} f_p \cdot f_{p'} \frac{\sin(qr)}{qr}$$

 $n_p:n_{p'}$

Debye Method

Buffer Subtraction

What's left in the difference?

 $\sum_{n_s:n_{s'}} f_s \cdot f_{s'} \frac{\sin(qr)}{qr}$ $\sum_{n_{sp}:n_s} f_{sp} \cdot f_s \frac{\sin(qr)}{qr}$

 $\sum_{n_{sp}:n_{sp'}} f_{sp} \cdot f_{sp'} \frac{\sin(qr)}{qr}$

$$\sum_{n_s:n_{s'}} f_s \cdot f_{s'} \frac{\sin(qr)}{qr}$$
$$\sum_{n_p:n_s} f_p \cdot f_s \frac{\sin(qr)}{qr}$$
$$\sum_{n_p:n_{p'}} f_p \cdot f_{p'} \frac{\sin(qr)}{qr}$$

Debye Method

Buffer Subtraction

SAMPLE

Actual measured SAXS curve contains artifacts:

$$I_{obs}(q) = I_{sample}(q) - I_{buffer}(q) = I_{ps}(q) + I_{pp'}(q) - I_{sp:s}(q) - I_{sp:sp'}(q)$$

particle scattering internal scattering excluded volume

internal scattering

 $I_{ps}(q) > I_{sp:s}(q) >> I_{pp'}(q), I_{sp:sp'}(q)$ (for q < 0.18-ish)

 $I_{ps}(q), I_{sp:s}(q) \approx I_{pp'}(q), I_{sp:sp'}(q)$ (for q > 0.18-ish)

Diffraction vs SAXS

Diffraction is a consequence of an ordered array of scatters.

- each "spot" is a reflection, Iobs(h k l)
 - no reflection \Rightarrow no data!

Resolution is measured as the increase in reflections away from center.

An increase in diffraction resolution \Rightarrow an increase in observed reflections, $I_{obs}(h \ k \ l)$

$$\rho(x y z)_{e_n density} = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F(h k l)|^2 \cdot e^{|2\pi i(hx + ky + lz) + i\alpha(hkl)|}$$

 $F_{h\,k\,l}$ observed as $I_{h\,k\,l}$

In crystallography, I_{obs} can be related back to a structure in real space (e_n^- density).

Not true for SAXS!

$$I_{particle}(q) = V \cdot \int_{0}^{d_{max}} \rho(r) \cdot \frac{\sin(q \cdot r)}{q \cdot r} dr$$

Is there an equivalent formalism in SAXS?

What constitutes a high or low resolution data set in SAXS?

Resolution

d-spacing Vector

d-spacing vector:

- sets the size of your molecular ruler.
- provides *fractal* dimension to SAXS.

What's the circumference?

How long is the coast of Great Britain? Science 1967 Mandelbrot M.

Resolution

P(r) function

Simulated in vacuo atomic scattering profile of P4P6 RNA domain

Resolution is a real phenomenon in SAXS, observed as "features" in P(r).

Low resolution, curve (green) is very smooth, increasing resolution adds more bumps to curve. Increasing q_{max} increases observed information content, must correct for internal scattering.

Radius-of-Gyration

Small Angle X-ray Scattering

radius-of-gyration (Rg): describe distribution of mass around particle's center of inertia

$$R_g^2 = \frac{1}{2} \cdot \frac{\int r^2 \cdot \rho(r) \, dr}{\int \rho(r) \, dr}$$

For a given particle, changes in conformation should \rightarrow change P(r) \rightarrow change R_g

Guinier and Debye worked out methods which "approximate" $R_g \Rightarrow It$ is not measured!

R_g can be approximated using visible or X-ray photons depends on:

- size of the particle
- angular dependence of scattering

radius-of-gyration (Rg): describe distribution of mass around particle's center of inertia

$$I(q) = 4\pi \int_{0}^{d_{\max}} P(r) \cdot \frac{\sin(q \cdot r)}{q \cdot r} dr$$

Taylor Series Expansion of sin(x)

$$\sin(q \cdot r) = \sin(a) + \frac{\cos(a)}{1!}(q \cdot r - a) - \frac{\sin(a)}{2!}(q \cdot r - a)^2 - \frac{\cos(a)}{3!}(q \cdot r - a)^3 + \frac{\sin(a)}{4!}(q \cdot r - a)^4 + \dots$$

Evaluating the function at a = 0

 $\sin(q \cdot r) = (q \cdot r) - \frac{1}{3!}(q \cdot r)^3 - \frac{1}{5!}(q \cdot r)^5 + \dots$ Using data at q near 0 like 0.001, gives a polynomial representation of $\sin(q r)$

Polynomial substitution of the sine function

$$I(q) = 4\pi \int_{0}^{d_{max}} P(r) \cdot \frac{1}{q \cdot r} \left[(q \cdot r) - \frac{1}{3!} (q \cdot r)^3 - \frac{1}{5!} (q \cdot r)^5 + \dots \right] dr$$

essentially zero, consider (q = 0.003)
Distribute

$$I(q) = 4\pi \int_{0}^{d_{mn}} P(r) dr - 4\pi \cdot \frac{1}{3!} \int_{0}^{d_{mn}} P(r) \cdot (q \cdot r)^{2} dr - 4\pi \cdot \frac{1}{5!} \int_{0}^{d_{mn}} P(r) \cdot (q \cdot r)^{4} dr + \dots$$

radius-of-gyration (Rg): describe distribution of mass around particle's center of inertia

Polynomial substitution of the sine function

$$I(q) = 4\pi \int_{0}^{d_{max}} P(r) \cdot \frac{1}{q \cdot r} \left[(q \cdot r) - \frac{1}{3!} (q \cdot r)^{3} - \frac{1}{5!} (q \cdot r)^{5} + ... \right] dr$$
essentially zero, consider (q = 0.003)
Distribute
$$I(q) = 4\pi \int_{0}^{d_{max}} P(r) dr - 4\pi \cdot \frac{1}{3!} \int_{0}^{d_{max}} P(r) \cdot (q \cdot r)^{2} dr - 4\pi \cdot \frac{1}{5!} \int_{0}^{d_{max}} P(r) \cdot (q \cdot r)^{4} dr + ...$$
Define $I(0)$ and R_{g}

$$I(q) = 4\pi \int_{0}^{d_{max}} P(r) dr \left[1 - \left(\frac{q^{2}}{3!} \right) \cdot \frac{\int_{0}^{d_{max}} r^{2} \cdot P(r) dr}{\int_{0}^{d_{max}} P(r) dr} \right]$$

$$R_{g}^{2} = \frac{1}{2} \cdot \frac{\int_{0}^{d_{max}} r^{2} \cdot P(r) dr}{\int_{0}^{d_{max}} P(r) dr}$$
Substitute
$$I(q) = I(0) \cdot \left(1 - \frac{q^{2} \cdot R_{g}^{2}}{3} \right)$$

Guinier method approximates scattering equation using Taylor/McLaurin series expansion

Guinier method approximates scattering equation using Taylor/McLaurin series expansion

Approximation with q close to zero

$$\ln I(q) = \ln I(0) - \frac{R_g^2}{3} \cdot q^2 \qquad \text{thus a plot of } \ln I(q) \text{ vs } q^2 \text{ will have a linear region}$$
$$y = b + m x$$

How valid is the approximation? How well does the Guinier R_g approximate $R_g^{real space}$?

How valid is the approximation? How well does the Guinier R_g approximate $R_g^{real space}$?

We recommend determining using data where $R_g < 1.3$

Scattering Contrast

Buffer Subtraction

$$\sum_{n_s:n_{s'}} f_s \cdot f_{s'} \frac{\sin(qr)}{qr} \qquad \sum_{n_s:n_{s'}} f_s \cdot \sum_{n_s:n_{s'}} f_s \cdot \sum_{n_s:n_{s'}} f_p \cdot f_s \frac{\sin(qr)}{qr} \qquad \sum_{n_s:n_s} f_{sp}$$

$$\sum_{n_s:n_{s'}} f_p \cdot f_{p'} \frac{\sin(qr)}{qr} \qquad \sum_{n_s:n_s} f_{sp}$$

 $n_{p}:n_{n'}$

At low resolution:

- solvent e_n^- density is an average from small molecules
- change f_s by adding sucrose, salts, etc.

What happens if $f_s = f_p$?

Scattering Contrast

Buffer Subtraction

 $\sum_{n_s:n_{s'}} f_s \cdot f_{s'} \frac{\sin(qr)}{qr}$

 $\sum_{n_p:n_s} f_p \cdot f_s \frac{\sin(qr)}{qr}$

 $\sum_{n_p:n_{p'}} f_p \cdot f_{p'} \frac{\sin(qr)}{qr}$

In general, e_n^- density(ρ) of ρ_{protein} , ρ_{RNA} , $\rho_{\text{DNA}} \neq \rho_{\text{solvent}}$

$$ho_{water} = 0.334 \text{ e/Å}^3$$

 $ho_{lysozyme} = 0.414 \text{ e/Å}^3$
 $ho_{RNA} = 0.621 \text{ e/Å}^3$

Scattering of the particle more correctly written as:

$$I_{particle}(q) = (\Delta \rho)^2 V \cdot \int_0^{d_{max}} P(r) \cdot \frac{\sin(q \cdot r)}{q \cdot r} dr$$

consider as $q \rightarrow 0$: $\lim_{q \rightarrow 0} \frac{\sin(q \cdot r)}{q \cdot r} = 1$

$$I_{particle}(0) = (\Delta \rho)^2 V \cdot \int_0^{d_{max}} P(r) \cdot 1 \, dr = (\Delta \rho)^2 \cdot V^2$$

I(0) is directly proportional to particle's volume scaled by $\Delta \rho$

Single to Many Particle Scattering

$$I_{macromolecules}(q) = I_{macromolecule}(q) \cdot c \cdot \frac{I_e \cdot N_1 \cdot P \cdot d}{M \cdot a^2}$$

$$\downarrow substitute constants for k$$

$$I_{macromolecules}(q) = I_{macromolecule}(q) \cdot c \cdot k$$

$$\downarrow rearrange$$

$$\frac{1}{k} \cdot \frac{1}{c} \cdot I_{macromolecules}(q) = I_{macromolecule}(q)$$

$$I_{sin gle particle}(q) = k^{1} \cdot \frac{1}{c} \cdot I_{sample}(q)$$

$$\downarrow limit as q \rightarrow 0$$

$$I_{sin gle particle}(0) = (\Delta \rho)^2 \cdot V^2 = (\Delta \eta_e)^2$$

$$I_{sin gle particle}(0) = (\Delta \rho)^2 \cdot V^2 = (\Delta \eta_e)^2$$

Scattering Contrast Mass Estimation and I(0)

$$I_{particle}(0) = (\Delta \rho)^2 V \cdot \int_0^{d_{max}} P(r) \cdot 1 \, dr = (\Delta \rho)^2 \cdot V^2$$

In real experiments, $I_{particle}(0)$ has to be scaled by concentration, c

Scattering Contrast

Alternative method for mass determination from I(zero)

- use a single standard (xylanase)
- do a dilution series (e.g., 2/3rds)
- determine slope

Porod Invariant

Assessing flexibility

G. Porod deduced an integral constant contained within a SAXS curve:

Assumption: defined $\Delta \rho$ between particle and solvent and scatterer has homogenous electron density

Integration of data transformed as $q^2 \cdot I(q)$ should be constant

$$Q = \frac{1}{2\pi^2} \int_0^\infty q^2 \cdot I(q) \, dq \quad \boldsymbol{\leftarrow}$$

$$Q = 2\pi^2 \cdot \left(\Delta\rho\right)^2 \cdot V$$

Q is the direct product of the excess scattering electrons of the particle and V_{particle}

$$Q = 2\pi^2 \cdot c \cdot \left(\Delta\rho\right)^2 \cdot V$$

Regardless of beamline, source, or wavelength;

Data should have the same constant with the same sample at the same concentration.

SAXS Invariants

(structural parameters derived directly from SAXS)

Q, Porod Invariant

$$Q = \int_0^\infty q^2 \cdot I(q) \, dq$$

Directly related to mean square electron density of scattering particle. Requires convergence in Kratky plot ($q^2 I(q)$ vs q).

V_p, Porod Volume

$$V_p = 2\pi \cdot \frac{I(0)}{Q}$$

I_c , correlation length

$$l_c = \pi \cdot \frac{\int_0^\infty q \cdot I(q)}{Q}$$

Requires a folded particle, otherwise Q won't converge properly. Q acts as a normalization constant and corrects for: I.concentration 2.contrast, $(\Delta \rho)^2$

R_g, radius-of-gyration

$$R_g^2 = \frac{1}{2} \frac{\int r^2 \cdot P(r) \, dr}{\int P(r) \, dr}$$

Does not require Q Concentration independent Contrast independent (as long as structure does not change) Essentially normalized to I(0)

Porod Invariant

Assessing flexibility

Kratky Plot

- visualization of Q
- used to interpret samples with flexibility

A plot of q2 • I(q) should show a curve that captures an area Define area means transformed data converges. Qualitative assessment of flexibility/unfoldedness

Can do quantitatively!

DETECTING FLEXIBILITY

Debye P. Molecular-weight Determination by Light Scattering (1947) J. of Physical and Colloid Chemistry

KRATKY PLOT

Qualitative Assessment of flexibility

for $q \cdot R_g > 1.3$, the scattering decays as $1/q^2$

Porod's Law

Porod, G. (1951). Kolloid-Z. 124, 83

Fourth Power law (Porod's Law)

$$I_{particle}(q) = V \cdot \int_{0}^{d_{max}} \rho(r) \cdot \frac{\sin(q \cdot r)}{q \cdot r} dr$$

ASSUMING: • compact particle • discrete en⁻ contrast

$$\frac{S}{V} = \pi \cdot lim \frac{I(q) \cdot q^4}{Q}$$

$$I(q) = \Delta \rho^2 V \cdot \frac{1}{l} \cdot \frac{8\pi}{q^4}$$
$$I(q) = k \cdot \frac{1}{q^4}$$

 $q^4 \cdot I(q) = constant$

I(q) decays as q^{-4} scaled by a constant value

 $q^4 \bullet I(q)$ becomes constant at high q

k proportional to surface area (V/I)

POWER LAW RELATIONSH

log vs log plot... quantitating flexibility?

Kratky Plot

0.05

0.00

0.10

0.15

0.20

0.25

0.30

0.35

Porod Invariant

Q, Porod Invariant

$$Q = \int_0^\infty q^2 \cdot I(q) \; dq$$

Directly related to mean square electron density of scattering particle. Requires convergence in Kratky plot.

Kratky Plot

Unfolded particle diverges, does not capture a defined area. (flexible, unfolded, gaussian chain like)

Folded particle displays convergence towards higher q

(folded, compact particle)

No Q implies, volume and l_c are no longer defined for flexible particles.

Defining a new Invariant

What does the integrated area mean?

The Volume-of-Correlation

I. substitute for *I(q)* $c \cdot V \cdot (\Delta \rho)^2 \int q \int P(r) \frac{\sin(q \cdot r)}{q \cdot r} dr dq$

$$c \cdot V \cdot (\Delta \rho)^2 \iint \frac{P(r)}{r} \sin(q \cdot r) \, dr \, dq$$

$$c \cdot V \cdot (\Delta \rho)^2 \int \frac{4\pi \cdot r^2 \gamma(r)}{r^2} r \, dr$$

V_c: A Novel SAS Ratio

Direct Mass Determination

the power law distribution

9446 PDB entries range from 8 to 400 kDa (protein only)

Distance Distribution Function

$P(r) \sim \text{pair-distribution function}$

Not a proper mathematical function
 Counts all the pairwise interatomic distances between en⁻ within the macromolecule.
 31 kDa macromolecule → 2,086 atoms → ~ 2,175,000 distance vectors

$$I_{particle}(q) = V \cdot \int_{0}^{d_{max}} \rho(r) \cdot \frac{\sin(q \cdot r)}{q \cdot r} dr$$

Properties of P(r)

P(-r) = -P(r) thus P(r) is an "odd" function *i.e.*, $f(x) = x^3$, sin(x),...

Defined on $0 < r < d_{max}$

Indirect Fourier Transform

A measured SAXS curve determines a unique P(r)-distribution. A P(r) distribution (from a model) can be used to determine a scattering curve.

Expect a smooth curve Minimize oscillations No negative values Iterative process in determining dmax Difficulties in finding a P(r) solution suggest poor sample.

43

scale free analysis

Receveur-Brechot V, Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci. 2012 Feb;13(1):55-75.

Durand D, et al. J Struct Biol. 2010 Jan;169(1):45-53.

Multiply I(q) by $(q \cdot R_g)^2$ and divide by $I(\theta)$

What does it all mean?

Use Guinier approximation to get some insights...

Guinier approximation relates scattering to *R_g*

Derivation shows all particles that can be approximated by Guinier relation should have a peak value occurring at: $q \cdot R_g = 1.732$

approximated by the same correlation function

 \rightarrow peak value of $3 \cdot e^{-1} = 1.104$

Starting with Guinier approximation:

$$I(q) = I(0) \cdot e^{-\frac{(q \cdot R_g)^2}{3}}$$

Multiply by (q·Rg)² and divide by I(0):

$$(q \cdot R_g)^2 \cdot \frac{I(q)}{I(0)} = (q \cdot R_g)^2 \cdot e^{-\frac{(q \cdot R_g)^2}{3}}$$

Do a change of variables letting u = q·R_g:

$$f(u) = (u)^2 \cdot \frac{I(q)}{I(0)} = (u)^2 \cdot e^{-\frac{(u)^2}{3}}$$

Find the first maxima by taking the derivative and solving for f'(u) = 0:

$$f'(u) = 2u \cdot e^{-\frac{u^2}{3}} - u^2 \cdot \frac{2u}{3} \cdot e^{-\frac{u^2}{3}}$$
$$2u \cdot e^{-\frac{u^2}{3}} = \frac{2u^3}{3} \cdot e^{-\frac{u^2}{3}}$$

Take the square root of both sides thus solving for u or $(q \cdot R_g) = \sqrt{3}$:

$$3 = u^2$$

45

 $\gamma(r) = e^{-\frac{r}{a}}$

Really about particles that can be

such as:

only a button away

Flexible, unfolded bounded: 1.104 < peak < 2 (Debye equation Gaussian chain)

using Volume-of-Correlation

Peak is inversely proportional to S-to-V ratio Max value is 0.82 (sphere) For a fixed molecule, any decrease suggests increase in surface area Illustrate differences better than previous (see SAM) Fully unfolded particle should have largest S-to-V ratio (low on graph)

Information Content

Moore, P.B. J. Appl. Cryst. (1980). 13, 168-175 Using Shannon Sampling theorem, P. Moore determined the number of independent parameters that can be extracted from a single SAXS curve.

$$I(q) = 8\pi \cdot \sum_{n=1}^{N} a_n \cdot \frac{1}{q} \cdot \left[\frac{\pi \cdot n \cdot d_{\max}(-1)^{n+1} \cdot \sin(d_{\max} \cdot q)}{(\pi \cdot n)^2 - (d_{\max} \cdot q)^2} \right] \quad \longleftrightarrow \quad p(r) = 8\pi \cdot r \sum_{n=1}^{N} a_n \cdot \sin\left(\frac{\pi \cdot r \cdot n}{d_{\max}}\right)$$

Represent SAXS data using a Fourier sine series

How large should N be?

Consider the denominator...

$$(\pi \cdot n)^2 - (d_{\max} \cdot q)^2 \implies (\pi \cdot n)^2 \neq (d_{\max} \cdot q)^2$$

The inequality naturally limits the expansion.

What Can SAXS Do?

Assess solution state of biopolymer

Does MX represent solution state (~40% of the time) Ensemble modeling

Characterize folded state of the biopolymer

Particle dimensions (d_{max}, R_g, R_c, mass, volume) Assess compactness (Porod Exponent)

Monitor/Detect Conformational Changes

Magnitude of change dictates resolution range Easy to detect by examining ratio of SAXS curves to reference state Visualize by P(r) distribution

Volumeteric Modelling

Bead model representation of the scattering particle (DAMMIN/F)

Atomistic Modelling

Refinement of existing PDB structure

- add back missing elements (chains, domains)
- refine homology model (ALLOS-MOD FOXS Server UCSF)
- rigid body modelling

References

"Super-Resolution in Solution X-ray Scattering and Its Applications to Structural Systems Biology" Annual Review of Biophysics, 2013 Volume 42, Pages 415-441 Rambo, R.P. and Tainer, J.A.

"Small-Angle Scattering for Structural Biology — expanding the frontier while avoiding the pitfalls." Protein Sci. 2010 19(4):642-57. Jacques DA, Trewhella J.

"Solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution"

Q Rev Biophys. 2007 Aug;40(3):191-285. Putnam CD, Hammel M, Hura GL, Tainer JA

"Small Angle X-ray Scattering"

Book circa 1982 Glatter O. and Kratky O. (very technical, freely available online)