SAXS
 Basics for BioSAXS

Robert P. Rambo
Diamond Light Source
B2I

Scattering and Size

Why is the sky blue, why is the sunset red?

Scattering

Small change in intensities at 690 nm
Use X-rays to get a bigger angular dependence

Scattering from a Single Atom

$h v: 8$ to 12 keV (1.55 to $1.03 \AA$ A)
flux: 10^{8} (home source) to 10^{12} photons/sec (synchrotron: B2I 10^{11} photons $/ \mathrm{sec}$)

- Photons are scattering with no change in wavelength (Thompson/Debye/Rayleigh elastic scattering)
- ~ I\% incident photons are scattered

The Scattering Angle

if q was defined only by θ, then scattering angle would be λ-dependent

Scattering from an Object

```
incident photons
tons
```



```
this distance is very large ( \(10^{10} \times\) larger \()\)
```

Scattering is described by a form factor: describes the amplitude of a scattered wave as a Fourier transform of an object's spatial distribution

Molecular Form Factor

$$
A(q)=\int_{\text {spatial distribution }} \rho(r) \times e^{i q r} d V
$$

Fourier term
Note: r is in fixed orientation

Scattering from an Object

 incident photons

Molecular Form Factor $A(q)=\int \rho(r) \times e^{i q r} d V$
Scattered Intensity, $\mathrm{I}(\mathrm{q})$, is the complex norm of the form factor $\mathrm{I}(\mathrm{q})$ will be intensity of an oriented particle

$$
I(q)=A(q) \times A^{*}(q)=\iint \begin{gathered}
\rho(r) \times \rho\left(r^{*}\right) \times e^{-i q\left(r-r^{*}\right)} d V d V^{*} \\
\text { Correlation } \\
\text { function }
\end{gathered}
$$

Fourier term is now the difference between 2 position vectors. Internal coordinate system becomes internal

Pair-distance Distribution Function

$$
p(r)=0 \text { when } r>d_{\max }
$$

- defined in real space
- no negative values $\left(\mathfrak{R}^{+}\right)$
- zero except for defined distances
- expected to be smooth as $r \rightarrow d_{\text {max }}$

$$
\begin{aligned}
V_{\text {particle }} & =\int_{0}^{d_{\max }} \rho(r) d r \\
& \vdots \\
& \vdots \text { implies } p(r) \text { has units of } \AA^{2}
\end{aligned}
$$

Set of all distances measured within the particle.

$$
\sum_{\text {internal distances }}=\sum r_{i j}=\int \rho(r) d r
$$

$$
\text { : logically this must be } \mathrm{V}_{\text {particle }}
$$

$$
\rho(r)=r^{2} \gamma(r) \quad \gamma(r) \text { : correlation function }
$$

Knowing $P(r)$:
I. Determine $\mathrm{V}_{\text {particle }}$
2. R_{g} (real space)
3. Correlation function

$$
R_{g}{ }^{2}=\frac{1}{2} \cdot \frac{\int r^{2} \cdot \rho(r) d r}{\int \rho(r) d r}
$$

Scattering from a Particle

In SAXS:

- particles are not centered at origin
- particles are sampled in all orientations

> Debye factor

$$
\exp \{-2 \pi i(\mathbf{q} \cdot \mathbf{r})\} \Rightarrow(\exp \{-2 \pi i(\mathbf{q} \cdot \mathbf{r})\})_{\text {average }}=\frac{\sin (\mathbf{q} \cdot \mathbf{r})}{\mathbf{q} \cdot \mathbf{r}}
$$

$$
I_{\text {particle }}(q)=V \cdot \int_{0}^{d_{\max }} \rho(r) \cdot \frac{\sin (q \cdot r)}{q \cdot r} d r
$$

Pair-distance distribution function

$$
p(r)=0 \text { when } \mathrm{r}>\mathrm{d}_{\max }
$$

- no negative values $\left(\mathfrak{R}^{+}\right)$
- zero except for defined distances

Correlation Function

Correlation Function

Pair-distance Function

Maximum self-correlation occurs at $r=0$
Correlation decays to 0 at $r>d_{\text {max }}$

$$
l_{c}, \text { mean width of } \gamma(\mathrm{r}) \quad l_{c}=\frac{l_{a v e}^{2}}{l_{a v e}}
$$

SAXS

Geometry of a Scattering Experiment

In a real experiment, scattering contributions from:

1. sample cell
2. solvent
3. air

Correct for above by buffer subtraction:

- need at least 1 SAXS measurement of "buffer" sample
- subtract from SAXS data sample

Debye Method

Buffer Subtraction

Using a distance vector:

$$
r=\frac{2 \pi}{q}
$$

Randomly through \mathbf{r} in and make note of its ends and count.

Several end-to-end pairs:
I. $\mathrm{n}_{\mathrm{p}}: \mathrm{n}_{\mathrm{s}}$
2. $\mathrm{n}_{\mathrm{s}}: \mathrm{n}_{\mathrm{s}^{\prime}}$ (intra)
3. $\mathrm{n}_{\mathrm{p}}: \mathrm{n}_{\mathrm{p}^{\prime}}$ (intra)

$$
\text { 4. } n_{p}{ }^{i}: n_{p}^{i} \text { (inter) }
$$

$$
\sum_{n_{s}: n_{s^{\prime}}} f_{s} \cdot f_{s^{\prime}} \frac{\sin (q r)}{q r}
$$

$$
\sum_{n_{p}: n_{s}} f_{p} \cdot f_{s} \frac{\sin (q r)}{q r}
$$

$$
\sum_{n_{p}: n_{p^{\prime}}} f_{p} \cdot f_{p^{\prime}} \frac{\sin (q r)}{q r}
$$

Debye Method

Buffer Subtraction

BUFFER

What's left in the difference?

$$
\begin{aligned}
& \sum_{n_{s}: n_{s^{\prime}}} f_{s} \cdot f_{s^{\prime}} \frac{\sin (q r)}{q r} \\
& \sum_{n_{p}: n_{s}} f_{p} \cdot f_{s} \frac{\sin (q r)}{q r} \\
& \sum_{n_{p}: n_{p^{\prime}}} f_{p} \cdot f_{p^{\prime}} \frac{\sin (q r)}{q r}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n_{s}: n_{s^{\prime}}} f_{s} \cdot f_{s^{\prime}} \frac{\sin (q r)}{q r} \\
& \sum_{n_{s p}: n_{s}} f_{s p} \cdot f_{s} \frac{\sin (q r)}{q r} \\
& \sum_{n_{s p}: n_{s p^{\prime}}} f_{s p} \cdot f_{s p^{\prime}} \frac{\sin (q r)}{q r}
\end{aligned}
$$

Debye Method

Buffer Subtraction

SAMPLE

$$
\begin{array}{ll}
\sum_{n_{p}: n_{s}} f_{p} \cdot f_{s} \frac{\sin (q r)}{q r} & \sum_{n_{s p}: n_{s}} f_{s p} \cdot f_{s} \frac{\sin (q r)}{q r} \\
\sum_{n_{p}: n_{p^{\prime}}} f_{p} \cdot f_{p^{\prime}} \frac{\sin (q r)}{q r} & \sum_{n_{s p}: n_{s p^{\prime}}} f_{s p} \cdot f_{s p^{\prime}} \frac{\sin (q r)}{q r}
\end{array}
$$

Actual measured SAXS curve contains artifacts:

$$
\begin{aligned}
& I_{o b s}(q)=I_{s a m p l e}(q)-I_{b u f f e r}(q)=I_{p s}(q)+I_{p p^{\prime}}(q)-I_{s p: s}(q)-I_{s p: s p^{\prime}}(q) \\
& \text { particle internal excluded internal } \\
& \text { scattering scattering volume scattering } \\
& I_{p s}(q)>I_{s p: s}(q) \gg I_{p p^{\prime}}(q), I_{s p: s p^{\prime}}(q) \quad \text { (for } \mathrm{q}<0.18 \text {-ish) } \\
& I_{p s}(q), I_{s p: s}(q) \approx I_{p p^{\prime}}(q), I_{s p: s p^{\prime}}(q) \quad(\text { for } q>0.18 \text {-ish) }
\end{aligned}
$$

SAXS

Small Angle X-ray Scattering

How does SAXS relate to structure?

Diffraction vs SAXS

Is there an equivalent formalism in SAXS?

Resolution

d-spacing Vector

d-spacing vector:

- sets the size of your molecular ruler.

What's the circumference?

- provides fractal dimension to SAXS.

How long is the coast of Great Britain? Science 1967 Mandelbrot M.

Resolution

$P(r)$ function

Simulated in vacuo atomic scattering profile of P4P6 RNA domain

$$
q_{\max }=0.3 \AA^{-1}(21 \AA \AA)
$$

$$
\mathrm{q}_{\text {max }}=0.4 \AA^{-1}
$$

$$
\mathrm{q}_{\max }=1.3 \AA^{-1}(4.8 \AA)
$$

Resolution is a real phenomenon in SAXS, observed as "features" in $\mathrm{P}(\mathrm{r})$.
Low resolution, curve (green) is very smooth, increasing resolution adds more bumps to curve.
Increasing $\mathbf{q}_{\text {max }}$ increases observed information content, must correct for internal scattering.

Radius-of-Gyration

Small Angle X-ray Scattering

radius-of-gyration $\left(\mathrm{R}_{\mathrm{g}}\right)$: describe distribution of mass around particle's center of inertia

$$
R_{g}{ }^{2}=\frac{1}{2} \cdot \frac{\int r^{2} \cdot \rho(r) d r}{\int \rho(r) d r}
$$

For a given particle, changes in conformation should \rightarrow change $P(r) \rightarrow$ change R_{g}

Guinier and Debye worked out methods which "approximate" $R_{g} \Rightarrow I t$ is not measured!
R_{g} can be approximated using visible or X-ray photons depends on:

- size of the particle
- angular dependence of scattering

Guinier

Small Angle X-ray Scattering

radius-of-gyration $\left(\mathrm{R}_{\mathrm{g}}\right)$: describe distribution of mass around particle's center of inertia

$$
I(q)=4 \pi \int_{0}^{d_{m \times n}} P(r) \cdot \frac{\sin (q \cdot r)}{q \cdot r} d r
$$

Taylor Series Expansion of $\sin (x)$
$\sin (q \cdot r)=\sin (a)+\frac{\cos (a)}{1!}(q \cdot r-a)-\frac{\sin (a)}{2!}(q \cdot r-a)^{2}-\frac{\cos (a)}{3!}(q \cdot r-a)^{3}+\frac{\sin (a)}{4!}(q \cdot r-a)^{4}+\ldots$
Evaluating the function at $\mathrm{a}=0$
$\sin (q \cdot r)=(q \cdot r)-\frac{1}{3!}(q \cdot r)^{3}-\frac{1}{5!}(q \cdot r)^{5}+\ldots \quad$ Using data at q near 0 like 0.00 I, gives a polynomial representation of $\sin (q r)$

Polynomial substitution of the sine function

$$
I(q)=4 \pi \int_{0}^{d_{m}} P(r) \cdot \frac{1}{q \cdot r}\left[(q \cdot r)-\frac{1}{3!}(q \cdot r)^{3}-\frac{1}{5!}(q \cdot r)^{5}+\ldots\right] d r
$$

Distribute

$$
I(q)=4 \pi \int_{0}^{d_{n+0}} P(r) d r-4 \pi \cdot \frac{1}{3!} \int_{0}^{d_{m}} P(r) \cdot(q \cdot r)^{2} d r-4 \pi \cdot \frac{1}{5!} \int_{0}^{d_{m}} P(r) \cdot(q \cdot r)^{4} d r+\ldots
$$

Guinier

Small Angle X-ray Scattering

radius-of-gyration $\left(R_{g}\right)$: describe distribution of mass around particle's center of inertia

Polynomial substitution of the sine function

$$
I(q)=4 \pi \int_{0}^{d_{m}} P(r) \cdot \frac{1}{q \cdot r}\left[(q \cdot r)-\frac{1}{3!}(q \cdot r)^{3}-\frac{1}{5!}(q \cdot r)^{5}+\ldots\right] d r
$$

Distribute

$$
I(q)=4 \pi \int_{0}^{d_{m a}} P(r) d r-4 \pi \cdot \frac{1}{3!} \int_{0}^{d_{m}} P(r) \cdot(q \cdot r)^{2} d r-4 \pi \cdot \frac{1}{5!} \int_{0}^{d_{m}} P(r) \cdot(q \cdot r)^{4} d r+\ldots
$$

Define $I(0)$ and Rg

$$
I(q)=4 \pi \int_{I(0)}^{d_{0}^{d_{m}} P(r) d r\left(1-\left(\frac{q^{2}}{3!}\right) \cdot \frac{\int_{0}^{d_{\mathrm{m}}} r^{2} \cdot P(r) d r}{\int_{0}^{d_{\mathrm{m}}} P(r) d r}\right)}
$$

$$
R_{g}^{2}=\frac{1}{2} \cdot \frac{\int_{0}^{d_{n o n}} r^{2} \cdot P(r) d r}{\int_{0}^{d_{n}} P(r) d r}
$$

Substitute

$$
I(q)=I(0) \cdot\left(1-\frac{q^{2} \cdot R_{g}^{2}}{3}\right)
$$

Guinier method approximates scattering equation using Taylor/McLaurin series expansion

Guinier

Small Angle X-ray Scattering

Guinier method approximates scattering equation using Taylor/McLaurin series expansion
Approximation with q close to zero

$$
I(q)=I(0) \cdot\left(1-\frac{q^{2} \cdot R_{g}{ }^{2}}{3}\right)
$$

$$
\text { Simply a Taylor Series expansion of } \mathrm{e}^{\mathrm{x}}
$$

$\longrightarrow e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \quad$ where $x=-\frac{q^{2} \cdot R_{z}{ }^{2}}{3}$

Substitute

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \quad \text { where } x=-\frac{q^{2} \cdot R_{g}^{2}}{3}
$$

$$
I(q)=I(0) \cdot e
$$

$\ln I(q)=\ln I(0)-\frac{R_{g}{ }^{2}}{3} \cdot q^{2} \quad$ thus a plot of $\ln I(q)$ vs q^{2} will have a linear region

```
y=b+mx
```

How valid is the approximation?
How well does the Guinier R_{g} approximate $\mathrm{R}_{\mathrm{g}}{ }^{\text {real space } \text { ? }}$

Guinier

Small Angle X-ray Scattering

How valid is the approximation? How well does the Guinier R_{g} approximate $\mathrm{R}_{\mathrm{g}}{ }^{\text {real space }}$?

We recommend determining using data where Rg_{g} < 1.3

Scattering Contrast

Buffer Subtraction

SAMPLE

$\sum_{n_{s}: n_{s^{\prime}}} f_{s} \cdot f_{s^{\prime}} \frac{\sin (q r)}{q r}$
$\sum_{n_{p}: n_{s}} f_{p} \cdot f_{s} \frac{\sin (q r)}{q r}$
\longrightarrow
$\sum_{n_{s}: n_{s^{\prime}}} f_{s} \cdot f_{s^{\prime}} \frac{\sin (q r)}{q r}$
$\sum_{n_{s p}: n_{s}} f_{s p} \cdot f_{s} \frac{\sin (q r)}{q r}$
$\sum_{n_{p}: n_{p^{\prime}}} f_{p} \cdot f_{p^{\prime}} \frac{\sin (q r)}{q r}$
$\sum_{n_{s p}: n_{s p^{\prime}}} f_{s p} \cdot f_{s p^{\prime}} \frac{\sin (q r)}{q r}$

BUFFER

At low resolution:

- solvent $e_{n}{ }^{-}$density is an average from small molecules
- change f_{s} by adding sucrose, salts, etc.

What happens if $f_{s}=f_{p}$?

Scattering Contrast

Buffer Subtraction

SAMPLE

$$
\begin{aligned}
& \sum_{n_{s}: n_{s^{\prime}}} f_{s} \cdot f_{s^{\prime}} \frac{\sin (q r)}{q r} \\
& \sum_{n_{p}: n_{s}} f_{p} \cdot f_{s} \frac{\sin (q r)}{q r} \\
& \sum_{n_{p}: n_{p^{\prime}}} f_{p} \cdot f_{p^{\prime}} \frac{\sin (q r)}{q r}
\end{aligned}
$$

In general, $\mathrm{e}_{\mathrm{n}}{ }^{-} \operatorname{density}(\rho)$ of $\rho_{\text {protein, }}, \rho_{\mathrm{RNA}}, \rho_{\mathrm{DNA}} \neq \rho_{\text {solvent }}$

$$
\begin{aligned}
\rho_{\text {water }} & =0.334 \mathrm{e} / \AA^{3} \\
\rho_{\text {lysozyme }} & =0.414 \mathrm{e} / \AA^{3} \\
\rho_{\text {RNA }} & =0.621 \mathrm{e} / \AA^{3}
\end{aligned}
$$

Scattering of the particle more correctly written as:

$$
I_{\text {particle }}(q)=(\Delta \rho)^{2} V \cdot \int_{0}^{d_{\max }} P(r) \cdot \frac{\sin (q \cdot r)}{q \cdot r} d r
$$

$$
\begin{aligned}
& \text { consider as } \mathrm{q} \rightarrow 0 \\
& \lim _{q \rightarrow 0} \frac{\sin (q \cdot r)}{q \cdot r}=1
\end{aligned}
$$

$$
I_{\text {particle }}(0)=(\Delta \rho)^{2} V \cdot \int_{0}^{d_{\max }} P(r) \cdot 1 d r=(\Delta \rho)^{2} \cdot V^{2}
$$

$I(0)$ is directly proportional to particle's volume scaled by $\Delta \rho$

Single to Many Particle Scattering

$$
\begin{aligned}
I_{\text {macromolecules }}(q)= & I_{\text {macromolecule }}(q) \cdot c \cdot \frac{I_{e} \cdot N_{l} \cdot P \cdot d}{M \cdot a^{2}} \\
& \begin{array}{l}
\text { substitute constants for } k
\end{array}
\end{aligned}
$$

```
c - concentration (gm/cm3)
I
NL
P - total energy over the irradiated area
d - sample thickness (cm)
M - molecular weight (gm • mol
a - distance to detector (cm)
```

$$
I_{\text {macromolecules }}(q)=I_{\text {macromolecule }}(q) \cdot c \cdot k
$$

rearrange
$\frac{1}{k} \cdot \frac{1}{c} \cdot I_{\text {macromolecules }}(q)=I_{\text {macromolecule }}(q)$

1. Standard curve with proteins of known M.W.
2. Determination of $\mathrm{I}(0)$ on an absolute scale.

Scattering Contrast

Mass Estimation and I(0)

$$
I_{\text {particle }}(0)=(\Delta \rho)^{2} V \cdot \int_{0}^{d_{\max }} P(r) \cdot 1 d r=(\Delta \rho)^{2} \cdot V^{2}
$$

In real experiments, $I_{\text {particle }(0)}$) has to be scaled by concentration, c

$$
I_{\text {particles }}(0)=c \cdot I_{\text {particle }}(0)=c \cdot(\Delta \rho)^{2} \cdot V^{2}
$$

For a given protein, ratio is a constant at a specific $(\Delta \rho)^{2}$

$$
\frac{I_{\text {particles }}(0)}{c}=(\Delta \rho)^{2} \cdot V^{2} \propto \text { Mass }
$$

This relationship can be used to make a standard curve to determine:

- mass of either protein, RNA or particles of same composition
- requires accurate knowledge of concentration

Scattering Contrast

Alternative method for mass determination from I(zero)

- use a single standard (xylanase)
- do a dilution series (e.g., 2/3rds)
- determine slope

Performed as a $2 / 3$ rds dilution series:

Xylanase in Two Different Buffers

Porod Invariant

Assessing flexibility

G. Porod deduced an integral constant contained within a SAXS curve:

Assumption: defined $\Delta \rho$ between particle and solvent and scatterer has homogenous electron density

Integration of data transformed as $q^{2} \bullet I(q)$ should be constant

$$
Q=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} q^{2} \cdot I(q) d q
$$

$$
Q=2 \pi^{2} \cdot(\Delta \rho)^{2} \cdot V \quad \begin{aligned}
& \mathrm{Q} \text { is the direct product of the excess } \\
& \text { scattering electrons of the particle and } \\
& \mathrm{V}_{\text {particle }}
\end{aligned}
$$

$$
Q=2 \pi^{2} \cdot c \cdot(\Delta \rho)^{2} \cdot V
$$

Regardless of beamline, source, or wavelength;
Data should have the same constant with the same sample at the same concentration.

Q ANQ ANMEMRMTS

(structural parameters derived directly from SAXS)

Q, Porod Invariant

$$
\int^{\infty} \text { Directly related to mean square electron density of scattering particle. }
$$

$$
Q=\int_{0}^{\infty} q^{2} \cdot I(q) d q \quad \begin{aligned}
& \text { Directly related to mean square electron density of } \\
& \text { Requires convergence in Kratky plot }\left(q^{2} I(q) \text { vs } q\right)
\end{aligned}
$$

V, Porod Volume

$$
V_{p}=2 \pi \cdot \frac{I(0)}{Q}
$$

Requires a folded particle, otherwise Q won't converge properly.
Q acts as a normalization constant and corrects for:
I.concentration
2.contrast, $(\Delta \rho)^{2}$

$$
l_{c}=\pi \cdot \frac{\int_{0}^{\infty} q \cdot I(q)}{Q}
$$

R_{g}, radius-of-gyration

$$
R_{g}^{2}=\frac{1}{2} \frac{\int r^{2} \cdot P(r) d r}{\int P(r) d r}
$$

Does not require Q
Concentration independent
Contrast independent (as long as structure does not change) Essentially normalized to I(0)

Porod Invariant

Assessing flexibility

Kratky Plot

- visualization of Q
- used to interpret samples with flexibility

A plot of $q 2 \cdot I(q)$ should show a curve that captures an area Define area means transformed data converges. Qualitative assessment of flexibility/unfoldedness

Can do quantitatively!

DeTECTING FLEXIBILITY

Debye P. Molecular-weight Determination by Light Scattering (1947) J. of Physical and Colloid Chemistry

Scattering by a Gaussian Coil

$$
I(q)=\frac{2\left(e^{-R_{g}^{2} \cdot q^{2}}+R_{g}^{2} \cdot q^{2}-1\right)}{\left(R_{g}^{2} \cdot q^{2}\right)^{2}}
$$

ASYMPTOTIC CHARACTERISTIC
$\lim _{q \rightarrow \infty} I(q) \cdot q^{2}=\frac{2}{R_{g}^{2}}\left(1-\frac{1}{q^{2} \cdot R_{g}^{2}}\right)$
within a limited q range where $q^{2} \cdot R_{g}{ }^{4} \ll 1$

$$
q^{2} \cdot I(q) \approx K
$$

$q^{2} \cdot I(q)$ becomes constant at high q Creates hyberbolic curve Basis for Kratky Plot ($\left.q^{2} \cdot I(q) v s q\right)$

KRATKY PLロT

Qualitative Assessment of flexibility

for $q \cdot R_{g}>I .3$, the scattering decays as $1 / q^{2}$

A plot of $q^{2 \cdot} \cdot(q)$ vs. q should approach a constant

Data must be collected to sufficiently high q with good S-to-N ratio

PロRロD'g LAW

Porod, G. (I95I). Kolloid-Z. I24, 83

Fourth Power law (Porod's Law)

$$
I_{\text {particle }}(q)=V \cdot \int_{0}^{d_{\max }} \rho(r) \cdot \frac{\sin (q \cdot r)}{q \cdot r} d r
$$

$$
\frac{S}{V}=\pi \cdot \lim \frac{I(q) \cdot q^{4}}{Q}
$$

$$
\begin{aligned}
& I(q)=\Delta \rho^{2} V \cdot \frac{1}{l} \cdot \frac{8 \pi}{q^{4}} \\
& I(q)=k \cdot \frac{1}{q^{4}}
\end{aligned}
$$

$I(q)$ decays as q^{-4} scaled by a constant value

$q^{4} \cdot I(q)$ becomes constant at high q
k proportional to surface area (V/I)

$$
q^{4} \cdot I(q)=\mathrm{constant}
$$

PロWER LAW RELATIロNGHIP

\log vs \log plot... quantitating flexibility?
if particle is flexible, should see a plateau in $q^{2} \cdot I(q) v s . q$

Porod

Debye

$$
q^{4} \cdot I(q)=\text { constant } \quad \text { constant } \approx q^{2} \cdot I(q)
$$

if particle is compact, should see a plateau in $q^{4} \cdot I(q) v s . q$ and $q^{4} \cdot I(q) v s . q^{4}$

$$
\begin{aligned}
& \downarrow \\
& I(q) \text { Defines a power law relationship! } \\
&=\frac{1}{q^{P}} \cdot S^{\prime} \quad \text { where } 2 \leq \mathrm{P} \leq 4 \\
& \ln I(q)=-P: \ln (q)+\ln \left(S^{\prime}\right) \\
& \\
& \text { Low-resolution SAXS } \\
& \text { Requires small amounts of sample }
\end{aligned}
$$

母 பANTIFYING FLEXIBILITY

example Lysine Riboswitch
Lysine riboswitch requires:

- Mg^{2+} for folding
- binds lysine

Porod Invariant

Q, Porod Invariant

$$
Q=\int_{0}^{\infty} q^{2} \cdot I(q) d q \quad \begin{aligned}
& \text { Directly related to mean square electron density of scattering particle. }
\end{aligned}
$$

Kratky Plot

Unfolded particle diverges, does not capture a defined area.
(flexible, unfolded, gaussian chain like)

Folded particle displays convergence towards higher q
(folded, compact particle)

No Q implies, volume and I_{c} are no longer defined for flexible particles.

Defining a new Invariant

Kratky Plot

What does the integrated area mean?

The Volume-of-Correlation

$$
\begin{array}{cc}
V_{c}=\frac{I(0)}{\int q \cdot I(q) d q}=\frac{c \cdot V^{2} \cdot(\Delta \rho)^{2}}{c \cdot V \cdot(\Delta \rho)^{2} \cdot 2 \pi l_{c}} & =\frac{V}{2 \pi l_{c}} \begin{array}{l}
\text { independent of: } \\
\text { I. contrast } \\
\text { 2. concentration }
\end{array} \\
\text { I. substitute for } I(q) & \text { Ic is the expected correlation length } \\
c \cdot V \cdot(\Delta \rho)^{2} \int q \int P(r) \frac{\sin (q \cdot r)}{q \cdot r} d r d q & c \cdot V \cdot(\Delta \rho)^{2} \int 4 \pi r \cdot \gamma(r) d r \\
\text { 2. collect like terms } & \text { 5. collect like terms }
\end{array}
$$

5. collect like terms

$$
c \cdot V \cdot(\Delta \rho)^{2} \int \frac{4 \pi \cdot r^{2} \gamma(r)}{r^{2}} r d r
$$

3. integrate by parts

$$
-\left.c \cdot V \cdot(\Delta \rho)^{2} \int \frac{P(r)}{r^{2}} \cos (q \cdot r) d r\right|_{0} ^{\infty} \longrightarrow c \cdot V \cdot(\Delta \rho)^{2} \int \frac{P(r)}{r^{2}} r d r
$$

V_{c} : A Novel SAS Ratio

MD simulation of SAM-1

V_{c} sensitive to conformational state like $\mathbf{R}_{\mathbf{g}}$
67% variance is contained within 2% mean

Direct Mass Determination

9446 PDB entries range from 8 to 400 kDa (protein only)

- Q_{R} scales with mass, linear via power-law distribution.
- Using actual data, 9% mass error with previously frozen samples.
- Linear relationship covers a large mass range 20 to $1,000 \mathrm{kDa}$.
- Effective for RNA samples 5\% error.

SXVS рәғеןnu!s

Protein

Use to infer mixtures: ...expect 26 kDa and get 40 kDa - monomer \leftrightarrow dimer?

RNA

Distance Distribution Function

2° Structure
Molecular Envelope

Distance Distribution

$p(r)$ Function

$\underline{P(r) ~ \sim ~ p a i r-d i s t r i b u t i o n ~ f u n c t i o n ~}$

- Not a proper mathematical function
- Counts all the pairwise interatomic distances between $e_{n}{ }^{-}$within the macromolecule.

31 kDa macromolecule $\rightarrow 2,086$ atoms $\rightarrow \sim 2,175,000$ distance vectors

$$
I_{\text {particle }}(q)=V \cdot \int_{0}^{d_{\max }} \rho(r) \cdot \frac{\sin (q \cdot r)}{q \cdot r} d r
$$

Properties of $\mathrm{P}(\mathrm{r})$

$\mathrm{P}(-\mathrm{r})=-\mathrm{P}(\mathrm{r})$ thus $\mathrm{P}(\mathrm{r})$ is an "odd" function i.e., $f(x)=x^{3}, \sin (x), \ldots$
Defined on $0<r<d_{\text {max }}$

How do we calculate $\mathrm{P}(\mathrm{r})$ from $I(q)$ data?

A measured SAXS curve determines a unique $P(r)$-distribution.
$\mathrm{A} P(r)$ distribution (from a model) can be used to determine a scattering curve.

I(q) vs q (Reciprocal Space)

$I(q)=\int_{0}^{d_{\max }} P(r) \frac{\sin q \cdot r}{q \cdot r} d r$

$P(r)$-distribution
(Real Space)

Gnom (Svergun)

- guess at the distribution

GIFT (Glatter's method)

- use cubic splines

Moore's Method

- use Fourier sine series

Expect a smooth curve
Minimize oscillations
No negative values
Iterative process in determining dmax Difficulties in finding a $P(r)$ solution suggest poor sample.

Dimensionless Kratky
 scale free analysis

Receveur-Brechot V, Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci. 2012 Feb;13(1):55-75.

Durand D, et al. J Struct Biol. 2010 Jan;169(1):45-53.
Multiply $I(q)$ by $\left(q \cdot R_{g}\right)^{\mathbf{2}}$ and divide by $I(0)$

Divide by I(0)
$I_{\text {particles }}(0)=c \cdot I_{\text {particle }}(0)=c \cdot(\Delta \rho)^{2} \cdot V^{2}$
$I(q)$ is independent of concentration and normalized to V

Still have units of \AA^{-2}, multiply by Rg^{2}

What does it all mean?

Use Guinier approximation to get some insights...

Dimensionless Kratky

Starting with Guinier approximation:

Guinier approximation relates scattering to $\boldsymbol{R g}_{g}$

Derivation shows all particles that can be approximated by Guinier relation should have a peak value occurring at: $\boldsymbol{q} \cdot \boldsymbol{R}_{g}=1.732$

$$
I(q)=I(0) \cdot e^{-\frac{\left(q \cdot R_{g}\right)^{2}}{3}}
$$

Multiply by $\left(\mathrm{q} \cdot \mathrm{R}_{\mathrm{g}}\right)^{2}$ and divide by $\mathrm{I}(0)$:
$\left(q \cdot R_{g}\right)^{2} \cdot \frac{I(q)}{I(0)}=\left(q \cdot R_{g}\right)^{2} \cdot e^{-\frac{\left(q \cdot R_{g}\right)^{2}}{3}}$
Do a change of variables letting $u=q \cdot R_{g}$:

$$
f(u)=(u)^{2} \cdot \frac{I(q)}{I(0)}=(u)^{2} \cdot e^{-\frac{(u)^{2}}{3}}
$$

Really about particles that can be approximated by the same correlation function such as:

$$
\gamma(r)=e^{-\frac{r}{a}}
$$

Find the first maxima by taking the derivative and solving for $f^{\prime}(u)=0$:

$$
\begin{aligned}
& f^{\prime}(u)=2 u \cdot e^{-\frac{u^{2}}{3}}-u^{2} \cdot \frac{2 u}{3} \cdot e^{-\frac{u^{2}}{3}} \\
& 2 u \cdot e^{-\frac{u^{2}}{3}}=\frac{2 u^{3}}{3} \cdot e^{-\frac{u^{2}}{3}}
\end{aligned}
$$

Take the square root of both sides thus solving for u or $\left(q \cdot R_{g}\right)=\sqrt{3}$:
$3=u^{2}$

Dimensionless Kratky
 only a button away

Flexible, unfolded bounded: 1.104 < peak < 2 (Debye equation Gaussian chain)

Dimensionless Kratky
 using Volume-of-Correlation

Peak is inversely proportional to S-to-V ratio Max value is 0.82 (sphere)
For a fixed molecule, any decrease suggests increase in surface area Illustrate differences better than previous (see SAM)
Fully unfolded particle should have largest S-to-V ratio (low on graph)

Information Content

Moore, P.B. J. Appl. Cryst. (1980). 13, 168-175 Using Shannon Sampling theorem, P. Moore determined the number of independent parameters that can be extracted from a single SAXS curve.

$$
I(q)=8 \pi \cdot \sum_{n=1}^{N} a_{n} \cdot \frac{1}{q} \cdot\left[\frac{\pi \cdot n \cdot d_{\max }(-1)^{n+1} \cdot \sin \left(d_{\max } \cdot q\right)}{(\pi \cdot n)^{2}-\left(d_{\max } \cdot q\right)^{2}}\right] \longleftrightarrow p(r)=8 \pi \cdot r \sum_{n=1}^{N} a_{n} \cdot \sin \left(\frac{\pi \cdot r \cdot n}{d_{\max }}\right)
$$

How large should N be?

Consider the denominator...

$$
(\pi \cdot n)^{2}-\left(d_{\max } \cdot q\right)^{2} \Rightarrow(\pi \cdot n)^{2} \neq\left(d_{\max } \cdot q\right)^{2}
$$

The inequality naturally limits the expansion.

$q_{\max }$	$d_{\max }$	n
0.32	71	7

$0.32 \quad 240 \quad 25$
Notice, increasing $d_{\max }$ naturally increases n (same for $q_{\max }$)

```
make sense?
```

- Logically, a larger macromolecule would require a more "complicated" equation to describe it.
- Similar to diffraction... larger object \Rightarrow larger unit cell \Rightarrow increase in $I_{\text {obs }}$ ((lysozyme vs ribosome)

What Can SAXS Do?

Assess solution state of biopolymer

Does MX represent solution state ($\sim 40 \%$ of the time)
Ensemble modeling
Characterize folded state of the biopolymer
Particle dimensions ($\mathbf{d}_{\text {max }}, R_{g}, R_{c}$, mass, volume)
Assess compactness (Porod Exponent)

Monitor/Detect Conformational Changes

Magnitude of change dictates resolution range
Easy to detect by examining ratio of SAXS curves to reference state
Visualize by $\mathrm{P}(\mathrm{r})$ distribution

Volumeteric Modelling

Bead model representation of the scattering particle (DAMMIN/F)

Atomistic Modelling

Refinement of existing PDB structure

- add back missing elements (chains, domains)
- refine homology model (ALLOS-MOD FOXS Server UCSF)
- rigid body modelling

References

"Super-Resolution in Solution X-ray Scattering and Its Applications to Structural
Systems Biology"
Annual Review of Biophysics, 2013 Volume 42, Pages 415-441 Rambo, R.P. and Tainer, J.A.
"Small-Angle Scattering for Structural Biology - expanding the frontier while avoiding the pitfalls."
Protein Sci. 2010 19(4):642-57. Jacques DA, Trewhella J.
"Solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution"
Q Rev Biophys. 2007 Aug;40(3):191-285. Putnam CD, Hammel M, Hura GL, Tainer JA
"Small Angle X-ray Scattering"
Book circa 1982 Glatter O. and Kratky O. (very technical, freely available online)

