Obtaining and analysing SAXS data from colloidal structures – basic introduction

James Doutch
Diamond Light Source

Small-angle x-ray scattering

- SAXS is used to study structures on length scales 1 500nm
- Can be used to study samples in the native state
- Very versatile technique used across physics, chemistry and biology
- Typical systems studied include:
 - Gels
 - Nanoparticles
 - Biological samples
 - Polymers

Classic SAXS instrument setup

Measureable region or 'q-range' defined by camera length and x-ray wavelength

Sample environments

- For colloidal systems, a variety of sample mounts can be used ranging from quartz capillaries through to flow cells or more complicated components
- Synchrotron SAXS beamlines and SANS instruments often focus on offering time resolved measurements in which the sample can be subjected to shear, temperature and pressure cycles in line
- Diamond offers in-line pressure cell, rheology and linkam heating, stop flow and lego

Sample environments

Rheometer

Pressure cell

Lego

SAXS Advantages and Disadvantages

Advantages

- Relatively easy to set the experiment up
- No need to have crystals
- Offers the ability to obtain real time and dynamic measurements
- Few limits on molecular weight

Disadvantages

- Low resolution
- Data analysis can be challenging
- Relatively high concentrations can required

Sample preparation

- Studying your samples in a native state is one of the key attractions of SAXS and SANS, however there are some considerations!
- Sample should not be too thick you will get problems with multiple scattering and attenuation
- You need to watch out for concentration dependence effects in solution systems (similar to BioSAXS..)
- There needs to be some contrast between regions/objects, inside the sample you're trying to measure!

Sample preparation

Basic SAS equation

$$I(q) = N_V V_p^2 (\rho_p - \rho_s)^2 F(q) S(q) - B$$

Where:

I(q) = scattered intensity

 N_v = number of particles

 V_p = particle volume

 ρ = scattering length densities

F(q) = form factor

S(q) = structure factor

Basic SAS equation

Form factor of the particle

Structure factor of the particle

Form factor
Information on the shape of the objects

Structure factor
Information on the interactions between objects

- Some basic plots will yield quick structural data
 - Plot In[I(q)] against q²
 - Scattering particles are smaller than the probed length scale in this regime

- Some basic plots will yield quick structural data
 - In the Guinier regime scattering particles are smaller than the probed length scale
 - Guinier plot gives radius of gyration of objects/domains/chain clusters
 - Plot In[I(q)] against q²
 - Gives indication of size with no dependence on model or absolute intensity
 - Be careful of interparticle interference in which case it becomes largely meaningless...

Dextran at low concentration

Dextran at low concentration Rg = 41Å

Radius of gyration

- Radius of gyration is the root-mean square of the distance of all electrons from the centre of gravity
- Well known for many shapes!!
 - Solid sphere radius R:

$$R_g = \sqrt{(3/5)} R$$

Thin rod length L

$$R_{g} = \sqrt{(1/12)} L$$

- Thin disk radius R:

$$R_{q} = \sqrt{(1/2)} R$$

- Porod regime gives fractal dimension of the objects and excluded volume
 - In this regime we are probing length scales smaller than the scattering objects
 - Plot your data in Log/Log format
 - The slope varies with different shapes/fractal dimensions
 - Values between -1 and -3 can denote mass fractals
 - Values between -3 and -4 can indicate surface fractals

- Porod regime gives fractal dimension of the objects and excluded volume
 - Slope of -1 denotes rods
 - If you get -2, indicates disks/lamella
- In the case of fractal structures
 - For classic Gaussian chains, -2
 - A value of -5/3 indicates swollen coils
 - Between -2 and -3 denotes some form of branched system or network

- Kratky plot
 - You need I(q)q² versus q
 - Emphasises departures from Gaussian chain behaviour
 - For a given system, you can observe certain behaviour at high q
 - Rod like systems show a linear increase at high q
 - Mass fractals and branched systems reach a maxima and then die off

Empirical SAS models

- There are certain very basic empirical SAS models which can be used on systems that are difficult to analyse e.g.
 - Guinier-Porod model (Boualem Hammouda)
 - Unified Model (Greg Beaucage)
- These can be used to build several Guinier and Porod regimes for a given scattering curve
- May be useful for analysing hierarchical systems or mixtures
- There are some more specific ones which are simpler to use!!

Empirical SAS models

- Correlation length model
 - Gives a correlation within the system which dies out exponentially and the Porod exponent
 - If Porod exponent is 2, this is a Lorentzian function

Correlation length should be large for systems like

gels

$$-P = 1.85$$

$$-\xi = 24 \text{ Å}$$

Empirical SAS models

- Broad peak model
 - Very useful indeed for amorphous layered systems
 - Basically bicontinuous structures
 - Will give d-spacing
 - Can be combined with a power law model for fitting
 - d-spacing 116 Å
 - -P = 2.9
 - Complex system!

Fractal models

- Structures which branch and/or crosslink into 3-D networks
- Several variations, most commonly used by Teixeira (1988)
 - Structure composed of building blocks usually spheres or cylinders
 - Structures aggregate to form fractal clusters
 - Power law decay corresponds to self-similarity dimension
 - Possible for basic particle to be polydisperse

Fractal models

Basic shapes

Monodisperse Spheres (radius 100Å)

Basic shapes

• Core-shell system (core radius 20Å, shell thickness 12Å)

Basic shapes

Cylinder/rod like particle (length 400Å, radius 10Å)

Polydispersity

- Many of your systems will have some polydispersity
- There are ways to account for this in your fitting:
 - Schulz distribution
 - Log-normal distribution
 - Gaussian

PD = 0.1 <u>Radius =</u> 100Å

Food hydrocolloids

- Starch is the key dietary carbohydrate in the human diet
- Granules are composed of a mixture of lamellar stacks and branched polymers forming fractal structures

Food hydrocolloids

- Starch is the key dietary carbohydrate in the human diet
- Granules are composed of a mixture of lamellar stacks and branched polymers forming fractal structures

Surface fractal

Mass fractal / polymer chains

Simultaneous RVA and SANS

Simultaneous RVA and SANS

Waxy Maize

Tapioca

Analysis

- Lamellar peak disappears after 4 minutes in all of the starches tested
 - This implies a loss of periodic order in the starch structure
 - Very little change in lamellar peak up to this point
 - Correlates exactly with the point in RVA at which the viscosity starts to increase markedly
- After this point the slope of the scattering curve suggests the formation of progressively larger scale structures
 - These structures have the hallmarks of being fractaltype domains with dimensions on the 10's of nanometer scale

diamond

Advanced Analysis

- Tapioca and Potato pastes seem to form large scale aggregates
 - At least 16nm
 - Low fractal dimension suggesting topologically simple structures
 - Seem to be chain like or linear at the length scales probed here
 - Evidence of another structural level above this
 - Probably worm like structures seen in EM images and detected by USANS at Saclay

Advanced Analysis

- Maize and Wheat pastes form rather smaller aggregates
 - Dimensions ~8nm
 - Higher fractal dimensions (~2.70) must be topologically rather complex
 - Aggregates show signatures of either being highly polydisperse or very branched – possibly both!!
 - Waxy maize is an intermediary
 - Monodisperse, large aggregates with considerable branching fraction
 - USANS/USAXS needed to probe higher level structures

SAXS sample environments

- Liquid flow cells
- High pressure cell
- Stop flow
- Rheometer
- Linkam heaters
- Tensile tester
- Syringe pumps
- Lego capillary ladder

Resources

- SasView (NSF)
 - Scattering models for polymers, colloids and particles
 - Handles x-ray and neutron data
- 'SANS Toolkit' B. Hammouda, NIST
- NIST and APS macros IGOR (x-rays/neutrons)
- FISH

Further reading

- Small-angle x-ray scattering, eds. O. Glatter, O. Kratky, Academic Press 1982
 - Available as free download
 - physchem.kfunigraz.ac.at/sm/
- Structure analysis by small-angle x-ray and neutron scattering, L.A. Feigin, D. I. Svergun, Springer 1987
 - Available as free download
 - www.emblhamburg.de/biosaxs/reprints/feigin_svergun_1987. pdf

Thanks for your attention!

