A Fizeau interferometer system for characterising and optimising large synchrotron mirrors

G.D. Ludbrook, S.G. Alcock, S. Scott, and K.J.S. Sawhney Diamond Light Source Ltd, Harwell Science & Innovation Campus, Oxfordshire, OX11 0DE, UK

Summary

A Fizeau interferometer system, using a MiniFiz150, has been developed to characterise and optimise the figure error of large synchrotron mirror assemblies using single-pass, double-pass, or stitching modes [1, 2]

System Parameters

- Designed to measure mirrors <0.15m in single-pass mode using λ /100 PV reference flat \bullet
- Mirrors from 0.15m 2m long are characterised in double-pass mode using $\lambda/100$ and $\lambda/20$ •
- Accommodates upwards, downwards, and sideways facing mirrors in double-pass mode \bullet
- Load capacity >100kg enables entire, mounted mirror assemblies to be investigated \bullet

System Schematic and Degrees of Freedom Mirror geometry θ = Grazing Angle λ /100 reference flat Upwards facing $\gamma_2 = 0$, $\gamma_1 = -\gamma_3 = -\theta$ $\alpha_1 = \alpha_2 = 0$ **Downwards facing** $\gamma_2 = 0, -\gamma_1 = \theta = \gamma_3$ $\alpha_1 = \alpha_2 = 0$ Sideways facing $\gamma_1 = \gamma_2 = \gamma_3 = 0$ $\alpha_1 = \theta, \alpha_2 = 2\theta$ **Mirror under test**

MiniFiz interferometer

- Optimised system repeatability of ~2nm rms is sufficient for most synchrotron optics •

Advantages

- Quick and simple to switch between operating modes
- 2-D figure data captured for entire optical surface \bullet
- Short acquisition times (<1min) enable dynamic surface changes to be investigated
- Complementary to slope-measuring profilers, such as • the Diamond-NOM [3]

Mounted mirror (I13) tested using double-pass mode, sideways configuration

VFM bimorph mirror (I04) tested using double-pass mode, upwards configuration

Using the MiniFiz to optimise the figure error of mounted mirror systems

Effect of Mirror mounting

Optimum clamping and cooling conditions can be determined prior to beamline installation

- Unmounted mirror of high quality and flatness (-429km)
- Mounted & unclamped mirror very similar to unmounted.
- Clamped mirror becomes

For optimum quality, data acquired when:

- Cleanroom fans turned off
- Interferometer cavity is thermally stable (10min "time window")
- Optical bench vibration isolated

Laser vibration sensor used to

- distorted (-52km) and worse figure error
- After iteratively changing the clamping and cooling water temperature, mirror is optimised

After clamping After temperature optimisation : T = 20.5C

Thanks to Ulrich Wagner (113) for participating in the above tests

References

- Ludbrook G.D., Alcock S.G., Scott S., "A double-pass Fizeau interferometer system for measuring the figure error of large synchrotron optics." Proc. SPIE 7801 (2010).
- Ludbrook, G. D., Alcock, S. G., and Sawhney, K. J. S., "A Fizeau interferometer system, with double-pass and stitching for characterising the figure error of large (>1m) synchrotron optics", Proc. SPIE 7389 (2009).
- Alcock, S. G. et al., "The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability," Nucl. Instr. and Meth. A 616, 224-228 (2010).

Contact: Simon Alcock (simon.alcock@diamond.ac.uk) & Geoff Ludbrook (geoff.ludbrook@diamond.ac.uk)

