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INTRODUCTION

This report describes the data fitting program FISH, written by R.K.Heenan. The program is best suited to the fitting of
acurve with arelatively large number of data points by a model with afew parameters. There are presently some eighty
available models, mostly concerned with the fitting of small angle diffraction data, though others such as polynomial
fitting and peak fitting are of more general use, as are the graphics routines.

The mathematical model used to fit the data and the values of the parametersin amodel may be changed interactively by
theuser. Thisisin contrast to most "least squarespackages' where amodel routine has to be compiled and linked by
the user with astandard library. Complete model descriptions or previously saved sets of parameter values may be
recalled from afile at any time. Any set of results may be written out tofile. All actions of the user arerecorded in a
monitor file, which may later be sent to a printer for closer examination. Values of parameters may be fixed, tied together
or constrained astheiterative fit proceeds.

A simple graphicsinterface allows plots of the results. The FISH program is designed to be easily portable from one
computer to another. The FISH2 program first released in Oct. 1999 runs under VMS, Windows and Unix, using PGPLOT
graphicsroutines. (FISH3 with agraphical user interfacein IDL isunder development for VM S and Windows.)

A typical run of the program uses READ or READ3 open adatafile, the user selecting aworkspace ( data set or memory)
numbered 1 to 24, to storethe data. The command FIT then enters the set up routine for datafitting. A "mode file" is
read containing previously set up model descriptions, one of which is selected for use. Data set numbers are then
chosen for the observed, calculated, background and other necessary data stores ( such as polydispersity, structure
factor etc.). Theinteractive FIT routineitself may then be started. The RUN command causes asingle cycle of least
squares fitting to be done. PP for Print Parameters will then display the results. After STOP to leave the interactive
routine and returning to the main program aL1ST command may be used to save calculated datasetsin afile. Detail
information on each of these stages and on the format of the variousfilesis given below. An exampleinteractive session
isincluded as Appendix D.

ACKNOWL EDGEMENTS

A number of contributors are thanked for allowing inclusion of their own routines or for making modifications or
additions to some parts of the code. Theseinclude C.Fagotti, J.Penfold, J.Hayter, A.Mackie, A.North, W.S.Howells and
H.Stanley. Major contributions are acknowledged in the FORTRAN code and in the appropriate parts of this manual.
References to formulae in the scientific literature are given where relevant. These should be consulted for the limitations
and interpretation of the theories applied.

FITTING METHODS

Fitting is by a standard iterative linear least squares method, involving computation of first derivatives of each calculated
data point with respect to each parameter in the model. Derivatives are calculated analytically in easier cases, elsefrom
the result of asmall numerical shift in one direction ( the user may adjust the size of these shifts). Convergence may
often be improved by applying less than the computed | east squares shifts. This may be doneviathe "partial shift"
associated with each parameter, the value of which in the program also determines whether a parameter is refining or not
(ON or OFF) or whether it is tied to another parameter ( >0, =0, or -1 respectively). Calculated shifts are often too large
dueto ignoring higher derivatives. If not "damped" down in some way dramatic oscillationsin parameter values may
occur and the fit then only convergesif just one or two parameters are adjusted at atime. Therate of convergenceis
often best when multiplying calculated shifts by a partial shift of about 0.4.

A variation of damping procedure is offered by the "Marquardt method" in which diagonal elements of the least squares
matrix are multiplied by (1+l), where| starts large and is recomputed at each cycle to obtain optimum convergence. (
Consult standard texts on fitting procedures). This hasthe effect of forcing the fit along the line of steepest descent
when it isalong way from convergence, gradually moving back to the more tortuous least squares route, which is at
right angles to this direction, asl decreases. In this method the goodness of fit isforced to always improve but thereis
no guarantee of finding even alocal minimum. Runswith test data shows that the Marquardt method may not converge
to the true least squares minimum where that minimum is not well defined (whichisusually why onetriesto useit). A
parameter search and/or different starting points should be used to give some idea of parameter correlation. Large
valuesin the least squares correlation matrix itself (use command CC to seethis) will also indicate a poorly determined
fit. Notethat when using the Marquardt method the estimated standard deviations of the parameters become
unreasonably small - run one cycle of normal |east squares before recording their values.

( To use the Marquardt method enter K2=1 and initialise CON(1) for | by entering N1= 1; to return to least squares enter
K2=0.)
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Some more detailed notes on |east squares and Marquardt fitting are given in Appendix E.

If these methods fail then "predicate observations' may provide an alternative to simply leaving some parameters at
fixed values. An expected value of a parameter isincluded in the fit asadataitem with acarefully assigned weight. This
is explained further under "MODEL 5" below, and has proven particularly useful in the field of molecular structure
determination where abond length may be allowed to "float" about its chemically expected value.

Data points to be fitted may be given unit weights ( use K1=0) or weighted as 1/ E2 (K1=1) or as VVdata ( K1=2, for where
E = sgrt(data) ), where errors E are read in with the data. If you have no errors, and the usual K1=1 is present in the most
mode file, then FISH will complain about “zero weights’, you will then have to set either K1=0 or K1=1. K1 isthe first
control parameter on the second line of the model file (more later or see L SQ model file format on p43).

Some experiments have been made with a maximum entropy weights scheme for particle size distributions, this requires
further development.

SOME PROGRAM PHILOSOPHY

The main sections of the program are each controlled by a simple command language; if you are stuck simply type HELP
or H for alist of relevant commands.

Data are stored in "sets" which are given a number (1-9), these are similar in concept to ( but considerably predate!)
"workspaces' inthe SIS GENIE program. Arithmetic manipulation of these setsis catered for, however more complex
operations are best done elsewhere such asin specific raw data reduction codes or in the GENIE program. For those not
familiar with GENIE these workspaces are simply data storage arrays. The model description used to calculate each point
in such an array isanalogous to alist of sequential instructions given to a programmable calculator. However FISH does
pre-search the model description for special cases, such as polydisperse particles, which require initialisation.

Sincetheinitial use wasto process small angle X-ray datafrom alinear position sensitve detector all data sets may be
stored with "left" and "right" sides with Q or radius respectively descending and ascending in value. Raw PSD data
may then be "centred" and adjusted before binning into Q. The datafiles allow for NCH data points, using points NC1
to NC2 onthe"left" and NC3 to NC4 onthe"right". Thus poor data at the ends of the usual ascending Q range may
simply beignored, but kept in the file, by setting NC3 >1 and NC4 < NCH ( seethe DATAFILE definition section).

More detail comments on programming styles are made in the section "Making changes to the program™.

HOW TO GET STARTED- the FISHPREF.TXT file

A file FISHPREF.TXT will be needed in your working directory, asillustrated below. A typical model file LSINP.DAT and
an example of FISHPREF.TXT and distributed with the program download. (FISHPREF.TXT provides asimple way to
keep the operation of FISH2 the same on any platform, by avoiding the use of system variables.)

I ths FISHPREF.TXT file needs to be in your working directory

I lines with exclamation mark are comments and are ignored

! Need system type VAX (for vms) or WIN (for Win95 or WNT) or LNX (for any linux and unix)
WIN

! Need "source directory" for FISH's command definition files

I (which are called FCOMMAIN.TXT, FCOMPLT.TXT and FHELPFIT.TXT)
C\FISH2\

!

I then the directory for logging file FISHLOG.LIS and

I graphics plot files ( scratch area on vax)

C\FISH2WORK\

!

I and finally the directory and name of the L SQFILE containing models

I file (you can call it any name you choose.)

C\FISH2AWORK\Isinp.dat

! Inside FISH use SET to switch to another file.

Run the executabl e, then use READ filename, or READ3 filename command in the main routine to get the input data,
thentry FIT. Follow through theitems 1to 3inthe FIT control section menu, to decide which set to fit and which sets
will store the calculated data, etc. Then proceed into the FIT interactive commands section. Study the example session at
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the end of thismanual. Use of an existing LSQFILE model file (usually stored as LSINP.DAT) will beagreat help as
actual examples are easiest to follow.

FORTRAN FILESTO BE ASSIGNED

There are several filesrequired by or generated by FISH, these can be changed from inside the program using SETUPin
the main program. They are summarised in the table below. Files may be called by any appropriate name, but will be
referred to by the namesin the table below throughout this manual.

Fortran stream File namein this Purpose Present default name
number manual
INPUT
FISHPREF.TXT Defines important directories and FISHPREF.TXT
initial name of LSQFILE
1 DATAFILE Actual data e.g. lgpg(Q) nnnn.Q
3 LSQFILE L east squares model description(s) LSINP.DAT
OUTPUT
2 MONITOR To record what you did MON.LIS
4 NEWDATA Modified or calculated data. FOR004.DAT
FISH will prompt for afile name.
8 NEWLSQ Modified or new model descriptions | FORO08.DAT

e.g. to save latest parameter values.
FISH will prompt for afile name.

graphics graphical output, default postscript FISHPLOT.PS

In addition there are three text files which define the command names and minimum abbreviations for the main program,
the PLOT routine and theinteractive FIT routine. NOTE that the MON.LIS file can become quite large, you may need to
purge or deleteit regularly.

COMMANDSIN THE MAIN CONTROL ROUTINE

These are the commands available on first entering FISH. Most people will only need to use READ, FIT, LIST, PLOT,
INDEX, STOP and possibly RANGE. The minimum numbers of characters for an acceptable abbreviation are underlined.
Input strings are converted internally to uppercase, up to the first space (so that case sensitive file namesin Unix are
preserved). The Nov. 2000 version alows spacesin filenames (for Windows).

HELP

Liststhe entire detailed helpfile.

T

Lists command names only.

READ-DATA [filename]

for ASCII (normal character) filesin standard DATAFILE format. Uses DATIN routine and channel 1.
Filenameis optional, if missing thefile previously set up will be used, as files may contain many sets of
data.

READ3 or R3 filename

for ASCII (normal character) 3 column Q, Intensity, Error file with asingle data set in Fortran free format.

READ2 or R2 filename

for ASCII (normal character) 2 column Q, Intensity (without Errors) file with asingle data set in Fortran free
format. If fitting you may need to use switch K1=2 or K1=1 to set |eass squares weights.



RNILS filename
for standard ILL datafilewith Q, Intensity, Error.

OTOKO filename

attemptsto read OTOKO binary format Xray file, NOT quite working ?, only works on WINDOWS, please
consult RKH if you need to import such data.

GETWIR
for BINARY linear datainput, old Daresbury SAXSformat in file[RKH.DL]Snnnn.FV 4, where nnnn is
input run number.

LIST
to list data set to monitor file ( for printer) or to write out an ASCII data set to the NEWDATA file, in which
case new title records will be asked for. ( The ouput ASCII file, default FOR004.DAT, may beread into a
GENIE workspace by COLETTE command OLD.)

INDEX
show details of the sets you have stored.

ARITHMETIC

add, subtract, divide, scale, normalise data sets.

QBIN - for processing raw linear detector data.

First entersthe RANGE routine, calculates Q valuesfor set | and will rebin into set J, if Jnon-zero.
Assumes that raw data channels are equi-spaced, will ask for camera distance, detector element spacing
and incident X-ray or neutron wavelength. (Enter anegative Q BIN DELTA Q value to jump back to main
routine if things go wrong.)

CENTRE - helpsto find middle of Daresbury SAXS data set,

asksfor pixel range L1,L2 to left of beam stop and a guess for mid-point. The mid-point is entered
multiplied by 10, to give the nearest 0.1 division. Then it sums (N(R)-N(L) )**2 over R corresponding to L
=L1,L2 where N(i) isthe count per channel. A small range of mid-pointsis chosen, the"best" may be at the
minimum sum. Use with care and plot resultsto test !!!

L-R
Put Left-Right differences for a Daresbury SAXS set into another data set, e.g. ready to plot. Resultsare
placed on the left side for the full range over which left and right sides overlap. If dataisin Q then alinear
interpolation is done on the right side to force Q values to match the Ifet side.

RANGEnN
Allows removal of points at the ends of the range of dataset n. e.g. to use points 10to 70 in aset with
normal ascending Qenter 0 0 0 10 70

PLOT
Enterslongwinded, complicated, but very flexible plot routine. First you will need to set up alist of setsto
plot, several can be placed on the same axes. If in doubt about optional parameters enter zeroes to get
default action. PLOT hasits own command language and help facility as detailed below.

BT

Enters least squares model-fitting program viathe FIT menu. This hasits own interactive language and
HELP command. A large number of models are available. See separate sections below. It ispossibleto fit
more than one linear data set simultaneously with overlapping parameters.



SETUP
Allows new input or output files, so there is no need to exit the progam to switch to another datafile. Enter
zerotojust list currently opened files.

STOP
Usethisfor agraceful exit from the program, don't forget to PRINT MON.LIS to the printer if the monitor
might contain useful information. It should provide arecord of what you did on the screen. Tidy up any
output files, note that on aVAX their names default to FOROON.DAT, where n is achannel number, if they
were not assigned elsewhere.

QUIT

Same as STOP

COMMANDS FOR THE PLOTTING ROUTINE

These commands are available after giving PLOT in the main program, note that a completely new command languageis
theninuse. Theinput hereisextremely tedious, however complicated overlaid plots may easily be built up using a
variety of graph markers. To get into thisroutine use PLOT in the main routine. To generate aplot arecipe has to be set
up, by READ, with alist of which work spaces are to be plotted and with which symbols. (i.e. you have to know in
advance exactly which setsyou want to plot as|ater overlays are not possible at present.) Thisrecipeis preserved upon
subsequent callsto PLOT (use LIST to seeit), so if you wish to change any of the workspaces arepeat plot can be made
without having to re-do aREAD. A SCREEN or FILE command will then produce the plot to the appropriate device.

NOTE the PLOT command in the interactive FIT routine becomes PICT and PLOT then enters a high speed routine to
show OBS, CALC and OBS-CALC for the present cycle of refinement. This does however redefine the plot recipe! Skip
therest of this section if you are only interested in doing simplefits. Y ou may however need to use this routine to plot
say apolydispersity function or to change axistypes (e.g. PICT, LOGLOG, STOP from FIT interactive commands to start
Log(Y) vs. Log(x) plots).

HELP
Full help instructions.
H
Quick list, or H Command for information on any Command.
SYMBOL
lists standard line and symbol types
READ

Asksfor alist of curves (sets) to be drawn, all on same axeswith different symbols or line typesfor each. (
do SYMBOL for moreinformation) Y ou will be asked for:

(@) (11) Number of curves (up to 9)

(b) for each curve:

(i) (B11) LTYPE - see below, line type e.g. solid or symbols
LSYMBOL - see below, marker type e.g. cross or asterix
IFOLD =1to fold about centre
IEB =nto add error bars of +-n*E(i)
I_NUM_NOT_Q=1to plot against channel rather than Q

e.g. for + signswith error bars enter 5301
(i) if datahasleft and right sides, (211) LTYPE, LSYM for the left side data
(iii) YSHIFT - added to Y values at plot time
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linetypesLTYPare: 1-straight line segments,
2 - smooth curve(local polynomials) 3 - dashed, 4 - dotted
5 - use symbols of type LSYM as specified by :
LSYM= 1-uptriangle, 2-downtriangle, 3- +, 4- X, 5-square,
6 - diamond, 7-circle, 8-*

NOTE: Some symbol or line type options may not be implemented on particular computers.
For symbols on a solid curve, enter the set twice, once as solid, again with symbols. If in doubt about any
values leave zero to get defaults.

LIST
Gives details on data sets chosen by READ
SCREEN
Draw on screen, the LOCAXISroutine will ask about the axis ranges- dependant upon local installation,
then you will get the plot !
FILE
Plot to afile. (The default postscript type can at present only be changed from PLOT in the FIT routine).
INDEX
Usual master index of all setsin memory.
STOP
Returnsto calling routine.
LINEAR
useY against X valuesjust as supplied.
LOG
use LOG(Y) against X, or use before other plot typesto return to base 10 logs.
LOGLOG
use LOG(Y) against LOG(X) (or LN(Y) against LN(X) if first issueaLN command ).
LN
choose LN(Y) against X, or use before other plot types to switch to natural (base €) logarithms.
GUINIER
LOG(Y) against X**2, useslog to base 10 unless you have previously issued aLN command.
ZIMM
1Y against X**2,
RODS
LOG(Y*X) against X**2 for thin rods.
SHEETS

LOG(Y*(X**2)) against X**2,



USER
choose your own transformations. These are of the form (X**i)(Y**J)LOG( (X**K)(Y**1) ) wherei j,k,| may
be defined differently for both X and Y axes.

FITnm

straight linesto befit to setsnto m, will ask for X range for each set, where the units of X may be the
originals, astransformed or as channel number. Will turn "off" thefit if oneis aready "on". Use LIST to
see the gradient etc. but after first doing a SCREEN or FILE command to see the plot.

FIT ROUTINE - MAIN MENU

This menu appears after issuing FIT in the main program, it guides the set up needed before entering the interactive fit
routine. Normal usage involves first READing some experimental datain the main routine, then enter FIT, and work
through options 1, 2 and 3 in this menu.

1 - Read mode file.
This reads the L SQFILE of model descriptions, enter 1 when you reach the appropriate model.

2 - Choose OBS,CALC etc.
First asks how many data set you want to fit- normally just 1, for multi-data sets fits the model must be
specifically designed with thisin mind.

Follow the instructions given to choose workspace numbers to be used for the OBServed data, the
CAL Culated data, BKG for experimental background (model 3), POLY polydispersity function (model 6)
and WRK to store scaled background (models 3 and/or 4) etc.

If indoubt enter 123456 789 assuming your dataisin workspace 1, but in theory leave a zero for a set

not required e.g. 1200304 5. Missing aspace or entering zero for aworkspace that is actually required

may result in the program stopping with a subscript out of range error. Y ou may have to re-enter option 2
after replacing one model by another using option 1 if extraworkspaces are required or if new datawith a

different number of points has been READ in.

For multiple data set models you may skip missing sets by entering-1 for OBS. e.g. if themodel has core,
shell & drop contrasts but you only want to input and fit core and drop, then say you have 3 setsto fit,
but enter say 1, -1 and 2 in the OBS column.

3- Enter fit routine

Goesinto the interactive fitting routine, see the next section.

4- Caculateonly or set Q.
Used instead of option 2 if there is no experimental data and you wish to do acalculation only.

5- Index

Asusual, helpsif you have forgotten which setsarein use.
6 - Return

Goes back to the main control routine.
31- Enters derivative test routine TESTER.

32- Enters derivative shift and integration scheme set up routine DELSET
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FIT ROUTINE COMMANDS- INTERACTIVE LEAST SQUARESFITTING

Thisroutineisreached from the FIT routine main menu, option 3, above. A highly abbreviated command languageis
used here due to the large number of times each command isused. To start with try out the commands P, PP, RUN, n=r
(eg. 1=123.45), n=ON (e.g. 1=ON=0.5) , n=OFF.

Parametersarein array V (i), commands below may have ranges n,m where n and m areintegers. If misnot present then
m=n by default. Real number r does not need adecimal point. , but no E+0On allowed (yet).

R or RUN

ST or STOP or RE or RETURN

nm or nm or n.m
n=r
n,m=0ON

n,m=0ON=r

n,m=0OFF
ON or OFF

nm=TIE

FF

TT

CC

PSor S

PCorC

PNorN

PT or T or PK or K
Sn,m or Cn,m or Nnm
Cn=or Tn=

Pnm=

IN or INDEX
PCT

PLOT
H or HELP

do one cycle of calculation.
return to calling routine.
prints values of V(n) to V(m) on screen.

sets value of V(n) to real number r

sets status of V(n) to V(m) to ON by setting partial shiftsto 1.0

additionally resets partial shift to valuer (e.g. use 0.4) which multiplies calculated
shifts, reduces oscillations in many cases.

sets status of V(n) to V(m) to OFF by setting partial shiftsto 0.0

changes status of whole fit regardless of partia shifts (NOTE: OFF followed
by ON zeroes all the calculated shifts, before they are applied, useful if
something has gone wrong.)

turns back on constraints turned off by setting partial shift to-1.0.

Printsall V(i) parameter values on screen ( same as 1,99)
Prints all Parameter information to screen, including titles, constraints etc.
Print to File, lists all dataand correlation matrix to MONITOR file.

Fill File writes current model and parameter valuesto file NEWL SQ (default
FOROO8.DAT).

Terminal Table, lists OBS,CALC dataetc. to screen.
printsleast squares Correlation Coefficient matrix on screen.
data Setsin use
Constraint relations
Numerical constants, CON(1) is Marquardt lambda
prints control records and titles
prints arange of the above
will invite areplacement for a constraint or title

' parameter records to change or construct amodel,
(regret no insert instruction).

resets constant n, e.g. N1=1.0 for Marquardt I, N4 for Dr, N5 for Ry

control flag n, e.g. K2=1 for Marquardt method, K2=0 |east squares,
K5=1tore-initialisenumerical integration schemes.

usual index of data sets

enters normal long-winded plot routine e.g. PICT, LOGLOG, STOP to switch
PLOT to log-log axes.

special plot for least squares data -see note below.

prints a shortened version of this section on screen.

Most sensible combinations of command and range are allowed.

Noteson PLOT command inside FIT which rather cryptically asks:
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PLOT CONTROLS IDEV=0-EXIT, 1-plot, 2-savefile, 3-new screen, 4-new file type
error barsare |IEB*sigma

IPW=1 adds scaled wts

IDEL spreads graphs apart (IDEL=2 is default)’,

ITXT =0tableinfile, 1 notable, 2-both, 3-screen only',

IDEV,IEB,IPW,IDEL,ITXT = (511)

Note this expects astring up to 5 characterslong, but giving just 11 will give IDEV=1, IEB=1to get aplot with error bars
on the screen.

Answering just 2 will give IDEV=2 to save the plot previously drawn to screen in afile, default postscript.

Answering 3 may be used to change the default screen type, or 4 to change the default hard copy file type (e.g. for
/CGML to get afile that may beincorporated into WORD, or /GIF ). Thelatter two options also prompt for new values of
the default line-width, character size and marker size so that plots may be further customised. The hard copy file also
contains atable of parameters. Parameter ITXT can add thistable to the screen version (e.g. if you need to make a
screen dump) or remove it from the hardcopy by using say 11002 or 11001 respectively.

The upper trace in the plot isthe observed data ( + markers with added error barsif IEB=1), the lower traceisthe
difference OBS-CALC, with error bars (if IEB=1).

If you have asked to store P(Q), S(Q) or b(Q) you will be prompted to over plot these, enter 1 for solid line, 3 for dashed,
5nwhere n=1 to 6 for different marker types. S(Q) andb(Q) will be rescaled to suit the plot axes.

ABSOLUTE INTENSITIES

The"scale" parameters for each model have aphysical significance when theinput dataisin absolute units. The
formulae supplied should enable them to be understood. Unfortunately iswas not convenient to use an entirely
consistent basisfor all of them. Some scale factors may not be in their most familiar form e.g. by having a particle
volume included or removed. This may avoiding adivide by zero possibility at R=0 or reduce parameter correlation by
making the scale constant independent of particle size. The polydisperse spheres distribution are all normalised to total
volume, allowing change from one distribution to another with minimal parameter shifts and also the possibility of fixing
the total volume fraction at a known value.

In general for neutron small angle scattering the probability of scattering per unit solid angle per unit thickness of
sample, in el is

dS(Q)/dw = N(Dr )2v2P(Q)
wherethere are N particles c3 (typically 1016) of volume V and particle form factor P(Q) is normalised such that
P(Q=0)=1.0. Dr isthe scattering length density difference between two phases for which

r =Snibj.r puik - Na / MW where bj isascattering length in cm.

eg. for DO r = (240,667 + 0.580)x10"12cm x 1.1g.cni3 x 6.02x10%3mol1 / 18g.molL

= 6.4 x 1010cn2

If Dr isentered in units of 1010cni2 then the scale factors given below for each model are multiplied by 1020 and they
then generally all work without underflow or overflow occuring in the FORTRAN programs. Molecular dimensions R are

assumed in A (= 1010m = 0.1nm) and scattering vector Q in A -1 throughout.

For X-ray scatteringr may be most easily expressed in electrons per unit volume, calculated from atomic numbers and
molar volumes. The probability of scattering by one electron then needs to be included,

I/lo = e4(2-25in2(2q) )/(mzc4) ~ 7.94x10-%cn? at small angles. Theactual "cross section" unitsfor X-rays should be
carefully checked for agiven instrument, one may for example have to divide by the sample-detector distance squared in
order to get counts per unit area detector per unit volume of sample or possibly have to allow for sample thickness or
incident beam monitor somewhere.
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LSQFILE MODEL DESCRIPTIONSAND CALCULATION METHODS

Each model description contains NT title records, NP parameters, NS data set information records, NC constraints and an
array of NN numerical constants. This section of the manual concerns the NP parameter records (type (iv) in the
LSQFILE format later ) which tell FORTRAN routines DERIV and CALCQ in FISH how to calculate an [(Q) array. In most
casesthelist of records are scanned in order for each point in the Q array. For more complex casesinvolving, for
example, integration over a particle size distribution, the list isfirst analysed by the program to decide on the method of
computation.

Several models are usually combined together to generate the complete calculated data | (Q). For example we may start
with MODEL 1 for a spherical particle, multiply by MODEL 22 for a hard sphere structure factor, add MODEL 3 for a
background, and finish with MODEL 99 (which is alwaysrequired). Consulting the detail descriptions of each model
below it will be seenthat thistakesNP =2 + 2 +3 +1 = 8 records altogether. If there are two separate sizes of spherical
particle then the two records for MODEL 1 may be repeated with a different scale factor and radius for the second
particle. Given that there are some 45 different models, many of which can be repeated, and numerous constraintsto tie
parameters together, there are an almost infinite number of overall models possible. Some examples are given at
Appendix B. The LSINP.DAT filethat you may have available will only have a selection of possihilities. Y ou should feel
freeto edit it to form new combinations of models.

M ost sensible combinations of model are allowed, there are some limitations such as using polydisperse spheres or
Hayter-Penfold S(Q) only once per data set to be fitted due to variousinitialisation checks. (1f MODEL 88 is used to fit
more than one data set then theinitialisation is repeated each cycle before each new set.) The program will not always
complain if asked to do something impossible or inconsistent - the user should check that the calculated 1(Q) is
reasonable. In extreme cases it may be necessary to study the workings of the program or to write a separate program to
generate test data.

A model may be altered or even read in from the terminal by the Pn,m= interactive command inthe FIT routine. Most
models require a series of records in a specified order, the control numbers LTY P(i) decide what they do, the character
string labels are | eft free to the user to annotate. The LTY P value on thefirst record of a group describing amodel has
particular significance. It isoften denoted LTY P(1) in the descriptions below. For many models LTYP(1) may be 1, 11,
21, 31 .... each of which specifies adifferent sub-model. NOTE we are not referring to the first of the NP parameter
records, but to the first record for aparticular model. In general please include as many records for each model as are
described in the manual ( evenif some are labelled "spare” or are not used by a particular sub-model). TheLTY P(i)
numbers on records after thefirst in amodel do not need the extra multiples of 10 (except as stated below, e.g. for
MODEL 16, LTYP(1)=11), this helpsto switch rapidly between sub-models by a single Pn= command.

Several termsin the scattering cross section are actually summed simultaneously as |(Q) is generated. These are
combined on reaching the MODEL 99 record or some other appropriate instruction - such asto "square" or to multiply

by an S(Q) structure factor. Most of the complications arise when dealing with the form factor F2(Q) for polydisperse
spheres or an anisotropic particle which then has to be multiplied by a structure factor S(Q). Skip this next part if you are
not concerned with such systems:

The structure factor for polydisperse or asymmetric particles has to be corrected by aratio b(Q) to obtain an effective
structure factor, still assuming no preferential interactions of any one particle with another, ( J.B.Hayter & J.Penfold
Colloid Polymer Sci. 261(1983)1022; M.Kotlarchyk & S-H Chen, J.Chem.Phys. 79(1983)2461-2469 ):

S(Q=1+b(Q(SQ)-1)
In the notation used internally by FISH: b (Q)= F(Q)Z/( SUMX . P(Q) ) = KF(Q)>FI<|F(Q)P>

At each addition to the intensity the program accumul ates:

P(Q) = P(Q) +"scale’ . FAQ)
FQ = F(Q) +"scale’ . F(Q)
SUMX = SUMX + "scale"

1(Q) =1(Q) +"scale” . FAQ)

IMPORTANT NOTE - this simplified methodology is ONLY correct for simple cases, such as polydisperse spheres or a
system al of rods or al of ellipses. It will not work for mixtures of different shapes, or mixtures of the same shapes but
different contrasts. To calculate b(Q) properly FISH would need to store separately both the number densities of each
type of particle and their contrasts. The averages need to distinguish asmall number of particleswith large contrast from
alarge number of particleswith small contrast which would otherwise contribute the sameto 1(Q).



On reaching an S(Q) model both S(Q) and b(Q) are computed and 1(Q) is multiplied by the corrected S(Q):

1Q=1QxSQ

In each model below calculation of b(Q) is mentioned whererelevant. The FIT ROUTINE - MAIN CONTROLS menu
option 2 allows the original functions S(Q) and P(Q) to be stored in workspaces, enabling them to be added to plots or
written out to file. Y ou will of course be expected to have provided workspaces for b(Q) and S(Q) when needed.

NEW (Nov. 2000) - the b(Q) correction to S(Q) may be turned off with the switch K8=1.

WHAT FISH DOES- A SUMMARY OF THE MODEL SAVAILABLE

The models here are grouped in the table below by functionality rather than in their (largely historical) numerical order

MODEL | LTYP Modelsin FISH
™)

PARTICLE FORM FACTORS

1 1 Spherical particle - simple monodisperse solid sphere

12 1 Guinier radius ( direct fit, useful to include flat background)

100r8 1 Spherical shell, sharp step ( repeat for multiple shells)

100r8 11 Spherical shell, linear, diffuse step

100r8 21 Spherical shell, decreasing exponential, to infinity

100r8 31 Spherical shell, decreasing exponential, truncated

100r8 41 Spherical shell, increasing exponential from R=0

100r8 51 Spherical shell, increasing exponential, from previous R

9 1 square operation, use after model 8 monodisperse shells

18 1 Rod/disc - rigid, monodisperse, randomly oriented, core/shell, with shell at
ends (useful for core/shell disc)

18 11 Rod/disc - rigid, randomly oriented, core/shell, without shell at ends
(useful for hollow cylinder)

18 21& 31 Rods, as above, oriented in shear flow, Hayter & Penfold, fit to 1d
averaged wedges of 2d data.

18 41& 51 Rods, as above, nematic “Maier-Saupe, DeGennes” distribution.

18 61& 71 Rods, as above, nematic “Maier-Saupe, DeGennes’ distribution, viewed
end-on.

1 11 "end on" view of amonodisperse cylinder

100r8 61 End-on view of mono/polydisperse fixed rod, multi-shell, sharp step

21 1 Solid ellipsoid, use model 24 instead.

24 1 Ellipsoid, core/shell with outer/inner radius ratio constant

24 11 Ellipsoid, core/shell with constant thickness shell

24 21&31 Ellipsoids as above, but with molecular constraints for surfactant micelles.
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POLYDISPERSITY used with Mode 10

1 21 Polydisperse solid spheres- analytic equations for Schultz distribution

6 11 Schultz distribution (all model 6 use numerical integration)

6 21 symmetric parabola

6 31 triangular decreasing

6 141 concave decreasing

6 51 flat “hat”

6 1 cubic polynomial

6 61 alternative cubic polynomial

6 71 stick model ( for bimoda )

6 81 power law between R1 & R2

6 91 log-normal distribution

5 1 test of amaximum entropy condition on polydispersity
PARTICLE STRUCTURE FACTORS

7 1 Critical scattering “attractive” S(Q)

19 1 Correlation hole S(Q)

22 1 Hard sphere S(Q)

22 11 Hard sphere S(Q) with attractive/repul sive square well

23 1 Hayter-Penfold charged sphere S(Q) (using their routines)

25 1 asmodel 23, with additional critical scattering term.

11 21 P(Q) = Constant (useful for fitting just S(Q) )
POLYMERS

14 1 Debye Gaussian coil - for polymers

14 11 Polydisperse Debye Gaussian coil

14 21 attempt at Kratky-Porod wormHlike persistence chain, (14 - 71 is better)

14 31 Benoit f-branched star Debye cail

14 1 Dozier star polymer

14 51 Leibler diblock copolymer

14 61 H-shaped copolymer with deuterated tips (D.J.Read)

14 71 K holodenko worm — mono/polydisperse with Guinier Raxial

14 81 K holodenko worm — mono/polydisperse with core/shell rod
SURFACES, SHEETS& FRACTALS

20 1 Q**nterm (compare LM=11)

12 11 Porod surface, with optional diffuseinterface

12 21 Porod surface, with diffuse layer of different scattering density.

26 1 Surface fractal form factor

13 1 Volume fractal S(Q)
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26 11 Andrew Allen, “cement” surface fractal

13 11 Andrew Allen “cement” volume fractal

28 1&11 Polydisperse sheet, with Lorentz “waviness’

28 21 Core/shell sheet, with Lorentz “waviness’

28 31 Core/exponential shell sheet, with Lorentz “waviness”

29 1 One dimensional paracrystalline stack, Kotlarchyk & Ritzau. (useful even
for abilayer)

29 11 Wenig & Bramer, flat, 3 phase paracrystal, allows gaps between stacks to
have different scattering densities
GENERIC GELS & 2PHASE MODELS

16 1&11 Teubner & Strey 2 phase “ peak”

17 11 Debye random 2 phase

27 1 Gels- Lorentzian plus Debye-Beuche
PEAK FITTING

27 21 Gaussian peak

27 71 Stretched Gaussian peak ( as used for LOQ resol ution)

27 31 Voigt peak ( Gaussian convoluted with Lorentzian)

27 51 Gaussian peak, going to exponential, with continuous first derivative.

27 61 Ikeda-Carpenter equation for neutron moderator time distributions

27 81 Gaussian convoluted by exponential
QUASELASTIC

4 11 “Vanadium” resolution function for neutron quasiel astic scattering

11 31 Deltafunction, as alternativeto LM=4, LTY P=11 for quasielastic data.

27 11 Lorentzian, for quasi el astic neutrons
GENERAL

2 1 does nothing - allows parameters to be introduced into constraints

3 11 Simpleflat background ( note background is stored separately and is not
resol ution smeared)

3 1 Quadratic background

11 1 General polynomial to order 7

4 1 Scaled subtraction of a*“background” data set.

11 21 P(Q) = Constant ( useful for fitting just S(Q) )

15 21&31 Resolution smearing by a constant width Gaussian

15 41 Resol ution smearing by input curve

15 51,61& 71 Resolution smearing, estimated for LOQ at SIS

5 -n Predicate observation - allows weighting of parameters towards “known”
values, see manual.

83 Oorn Allows multiple data sets, following lines arefor al (0) or just set n.

9 1 ALWAY S needed to end the calculation




MODEL 1

LTYP=1
LTYP=2
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Solid particles, analytic equations for sphere, "end view" of cylinder, and Schulz polydisperse spheres:

LTYP=1, Small angle scatter from a spherical particle of radiusr. Each size of particlein amixture of sizes
requires two records:

A scale = 1(Q=0)= 10"24N(Dr )22
r radius

where N particl es.cn3 have volume V:4pR3/3 A3 and scatteri ng length density differenceisin e (see
above).

Together thesedo F = 3*[(sin(Qr)-Qrcos(Qr))/(Q)3]

PQ) = P(Q) + A*F2

F(Q)=F(Q) + A*F ( notethishasA not A2 seeIMPORTANT NOTE above.)

"End on" view of acylinder of radiusr (compare model 8, LTYP = 61)

LTYP=11
LTYP=12

A scale

r radius

Analytic equations for Schultz distribution, from M.Kotlarchyk & S-H Chen, J.Chem.Phys. 79(1983)2461-2469 (following

LTYP=21

LTYP=22
LTYP=23

MODEL 2

MODEL 3

LTYP=1

LTYP=11

others), after rearrangement to avoid overflowswith small s, and re-scaling the Schultz to per unit volume
(similar to Model 6 below) so that "scale" varieslittle with changesins/R and is proportional to total
dispersed volume (integrated over the polydispersity). Note volume mean radius (needed for f =NV) is
given by <R*> = (1+s/R)(1+2s/R)R®. e.g. for number mean R = 50A and s/R = 0.2, volume mean <R*>"* =
51.97 A, i.e. larger due to the asymmetric size distribution. This makes a considerable difference to the
scaling due to the dependence of 1(Q=0) on ~ V4 F(Q) is computed as above for inclusion in ab(Q)
correction done by afollowing S(Q). Note thismodel will not store polydispersity separately as done for
the numerical integrationin Model 6. The main purpose of this model isto add "extra" scattering, such as
a"'magnetic core", to other more complex models.

A scale=10%f(Dr }* whereDr isin unitsof cm?andf istotal volume fraction, summed over
the polydispersity.
R mean radius

s/R polydispersity

Doesnothing! The parameter entered here is normally used in constraints, e.g. for ashell thicknessin
polydisperse spheres.

A quadratic (e.g. for abackground) is ADDED into the calculated data set (at model 99). Thisisalso
added into workspace WRK, as defined in option 2 of "fit routine main controls* (see model 11 for a
general polynomial fit not stored in WRK). Note the addition is done AFTER any structure factor
multiplication, squaring operations or resolution smearing of 1(Q) regardless of where the records appear in
thefile. (NOTE the PLOT command gives an option to subtract WRK(Q) from both OBS and CALC
before producing the plot.)

WRK(Q)=WRK(Q)+ A + B*Q + C*Q**2

> O W >

short version for aflat background, saving two records, WRK(Q)=WRK(Q)+ A



MODEL 4

LTYP=1

LTYP=11
12d

MODEL 5
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Add an experimental or otherwise cal culated background to the calculated set. This "background” isinput
asset BKGinthe FIT control section, the scaled datais added into set WRK ( together with any model 3
background) so may be subtracted in plots or investigated separately. Note the addition isdone AFTER
any structure factor, squaring or smearing on |(Q) regardless of where the records appear in the deck.

A scale parameter (which may be refined) WRK(Q)=WRK(Q)+ A*data(Q,BKG)

TheLTYP=11,12 model uses datastored in set 9 ( hardwired at present, see IV=9 linesin code, and
MODEL 15, LTYP=41) to add an "elastic line" for quasi-elastic neutron data. The elastic line, being itself
the resol ution function does not need to be smeared, so is put into the "background" here. At I(Q=E) we
havel(E) = I(E) + A* CUBIC( RESOL( E + d) ) where function CUBIC is a Lagrange cubic interpolation
through a group of the nearest 4 points, that here returns zero if E+dis outside the range of the data stored
inset 9, (asdefined by NC3(9) to NC4(9) ). i.e. the supplied resolution data must be reasonably smooth, in
similar bins to the data being fit, and cover positive and negative Q values, though it may cover lessrange
than the actual data.

A scale parameter (which may be refined) - special model for vanadium resolution function.
shift d(which may be refined)

Used to enter "predicate observations', these are NOT part of the computation of 1(Q) and are simply extra
items of experimental data. Theideais simple, oneincludes a guessed value of aparameter as adataitem
with aweight based on its expected uncertainty. Thisismore flexible than fixing a parameter at some
arbitrary value as the value may still movein the least squares fit. The method has proven very useful for
underdetermined molecular structuresin gas electron diffraction and microwave spectroscopy where some
bond lengths are well known to always fall within certain tolerances.( The primary referenceisL.S.Bartell,
D.J.Romenesko and T.C.Wong in "Molecular Structure by Diffraction Methods" eds. GA.Sim and
L.E.Sutton, (Specialist Periodical Reports), The Chemical Society, London, Vol.3,(1975), Part |, Chapter 4.)

NOTE- control flag IP=K3 on record (ii) decides whether predicate observations are to be included in afit
regardless of whether these entries have non-zero weights.

Two records are needed for each predicate observation:

Either (i) smpletype:

LTYP=

-J
-J

guessed value for parameter Jin the model

weight for this observation

Or (ii) aspecial type, for use with polydisperse small angle scatter :

LTYP=1

o o1~ WN

Guessfor Vg
Weight" "
Guessfor s(r)/rbar
Weight” " "
Guessfor entropy term (. abig number)
Weightfor " "

Entropy hereis an experimental use of the maximum entropy method, to help with polydisperse problems.
entropy = -0 P(r)logg(P(r)/B) dr

where estimator B is CON(7)=N7 and P(r) integrates to unity.



MODEL 6

LTYP=11

13

14

17

Used alonethis allows for polydisperse solid spherical particles, in combination with MODEL 10
polydisperse core/shell or multilayer particles are calculated.. A number of choices of particle size
distribution are allowed, decided upon by the value of LTY P(1) on thefirst of at |east four records
required. Some experimentation isrequired to find amodel that will converge, the small and large particle
limits correspond to extreme high and low Q data respectively which are usually poorly defined. Predicate
observations (see model 5) with high weights may help to restrain polynomial coefficients aswill
application of small partial shifts. It isrecommended to refine aflat background addition to 1(Q), checking
that its value remains sensible compared to expected systematic errors or incoherent background.

If the particle size distribution is P(R) then, unless otherwise specified, R is automatically restricted to a
range where P(R)>0 and R< Rmax where Rmax is stored as CON(5), which is N5 in the interactive routine.
Thestep sizein Ris CON(4) or N4, which is used:

(@) during aninitial search to check Rmin and/or Rmax values

(b) when storing P(R) in set POL, which may later be written out or plotted. (Note that thisis despite the
fact that the numerical integrals may be performed by a quadrature method that does not actually use this
array.)

(c) asthe R interval for Simpson'srule integrations.

REMEMBER TO SET R SEARCH STEP SIZE and Rmax!! (eg. do N4=2.0 N5=1000.)

Moments and averages of P(r) are calculated numerically, you will be prompted for a choice of numerical
integration method. on starting a calculation (or do K5 = 1 to be prompted again). Integration schemes
available are 4,10,48 or 64 point Gaussian quadrature, two more general 10 point quadratures ( see
C.G.Harris& W.A.B.EvansInternational J. Computer Math. B6(1977)219-222) and finally Simpson'srule. In
general the higher number methods produce the best results, and with modern computers are not unduly
slow. A Gaussian quadrature islike Simpson's rule except that the points used are not equally spaced. For
functions that are well described by a polynomial a quadrature method is more efficient. See Appendix Fif
you are not familiar with numerical integration methods.

Until Feb 2002 the values of radii in MODEL 10 were left at the values | ast used by the numerical
integration for MODEL 6, i.e. the maximum values included, so to see the "mean" you had to look at
MODEL 6, not the MODEL 10 linewith PSHIFT =-2.0. Since FEB 2002 the constraints routines are called
one more time after the calculations, with R = Rbar, so that MODEL 10 radii are now printed out at their
mean values.

Remember also to set CON(7) for entropy estimator B if it isneeded. When using Model 6 some
informative print out will appear which includes the numerically computed values of average radius Rbar,
s(R)/Rbar etc.; check that these are what you expect ! (if not examine the parameter values and check N5
& N4).

Model 6 may at present only be used once in the whole fit (you could add a previously calculated
polydisperse set using MODEL 4 or for solid particlesuse MODEL 1 - LTYP=21).

On the first record of each sub-model below "scale’ = 10"24(Dr )2 where Dr is scattering length density
differencein cnr2. f = volumefraction=S N;V;, i.e. the polydispersity function is normalised to unit
volume. If model 6 is combined with model 10 and Dr for model 10 is entered in units of

101012 then the model 6 "scale” = 1074

Scde Modified Schultz distribution

Rpar  meanradius
Ry offset, usually zero! P(r) = [(Z+1)/ (Rpgr-Ry1Z rexp{-(Z+1)/( (RparRy)-N}HGZ+D)
s/(RparRy) wherer=R-R; and s = (Ryg-R)/(Z+1)"2

At s goes to zero the Schultz distribution tends to adeltafunction, at small s a Gaussian, and for large s
becomes skewed to larger sizes similar to alog-normal. The main advantage of the Schultz formisin
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having an analytic solution for F(Q) - see Kotlarchyk & Chen mentioned above, though it is actually
simpler in practise to perform numerical calculations as here. Thisisstill tricky asZ can belarge causing
underflow and overflow problems. The calculation is made stable by taking logarithms and by using an
asymptotic form of the gamma function G(Z+1) at large Z. The model tends not to converge unless the
starting parameters are very close to the final answer. NOTE the Schultz distribution P(r) is significant
down to r=0 whens islarge. R1 optionally allows the whole distribution to be shifted, so P(r)=0for r <Rj.

LTYP=01 Scale Log-normal distribution
92 Rpar mean radius
%3 Ry P(r) = exp{ -0.5(log(r) - )/s)2 } (T (2p)*2)
et s/(RparRy) wherer=R-R; and (Rpg-Ry) = exp{i+05*s2

This also produces a size distribution skewed to higher r, the median isexp{ 1} . Some physical
significance may be attributed given a system which israndomly subdivided into smaller pieces. The
model hereis characterised by Rbar and s/Rbar, with an optional shift of the whole distribution by R.

The definition of a"log-normal” P(r) seemsto vary alittle from one reference to another.

The next four model types allow the r range to be directly adjusted ( see constraints for how to tie R1 and (R2-R1) to fit
Rmidandl):

LTYP=21 Symmetric parabola P(r) = 4A(r-R1)(r-R2)/(R1-R2)** 2
LTYP=31 Triangular decreasing P(r) = A(R2-r)/(R2-R1)

LTYP=41 Concave decreasing parabola P(r) = A(R2-r)**2/(R2-R1)
LTYP=51 Constant Pr)=AforRl=<r=<R2

These four simple functions for P(r) all require four records:
LTYP=21or3lor4lor51 Scae

22 etc. R2-R1
23 R1
24 spare, but must be included

Several other shapes or definitions of polydisperse particle distributions are available:

LTYP=1 A Polynomial for polydispersity
2 B P(r) = A +B*r +C*r**2 +D*r**3
3 C
4 D

LTYP=61 A Modified polynomial for polydispersity
62 B P(r)=A +ABr +ABCr**2 +ABCDr**3
63 C scaling is easier but terms stop after a zero coefficient.
64 D

LTYP=71 Scale "Stick model” or "free form™" polydispersity
72C1 P(r) isinterpolated by a4 point cubic polynomial
73R1 through sticks of height Cn at position Rn. At least
72C2 fours sticks are required with r valuesincreasing

73R2 but not necessarily at equal intervals. This copes
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72C3 with a"bimodal" particle size distribution.

73R3 N.B. P(r) iscontinuous, but is set zero when the cubic interpolation is less
72C4 than zero. Negative values of Cn affect shape of adjacent positive regions
73R4 soleavethemin! May need adozen or more sticks with the first and

72 etc. last set to zero. Start with the other Ci equal. Scale parameter is as per

usual, P(r) is normalised to give correct volume as per Schultz etc.

LTYP=81 Scae polydispersity P(r) = ( abs(r -Rg) )N
2R2-R1 whereif n<0 Rg=R2+DR
3R1 n>0  Rg=Rl
4n and DR =N4=CON(4)

ThisisthesameasLTYP=41if n=2, but gives flexibility to change the degree of asymmetry in the size distribution.

MODEL 7
Critical scattering structure factor- this MULTIPLIES al previously summed termsin I(Q). Preceding
derivatives of 1(Q) are aso appropriately treated. (For asimilar form factor see MODEL 27.)
LTYP=1 k - kappa S(Q)=1+k/( 1+ 229
2 Z- zeta, correlation length 1(Q) =1(Q)*S(Q)
MODEL 8
M onodisperse spherical particle with "multi-shell" contrast profile. Compare MODEL 1 where |F(Q,R)|2 is
summed, here we sum F(Q) and then use MODEL 9 to squareto get 1(Q). ( This model must usually be first
in the deck and must have all its pairs of Dr and R records adjacent. Consult the FORTRAN codeif you
really need to useit elsewhere, asit may not do what you want.) See MODEL 10 for more details of
LTYP=11,21,31,41,51 or 71, which are complex, asthey are a THREE parameter model involving the
preceding radius also !
ALSO, LTYP =6, monodisperse core/shell rods seen “end - on” ( compare model 18).
LTYP=1 Dr - contrast ( F(Q) asper (10-2) below )
2a -radius
LTYP=11 Dr - contrast “fuzzy” shell, linearly increasing or decreasing, from previous radius.
2b -radius
LTYP=21 Dr - exponential shell, downhill to infinity, from previousradiusa
2a+3.5L radiusdefining eqonential decay.
LTYP=31 Dr - exponentia shell, downhill, cut ata + 3.5L, from previousradiusa
2a+3.5L radiusdefining exponential decay and cut off.
LTYP=41 Dr - exponentia shell, uphill, from radius zero.
235L defining exponent L
LTYP=51 Dr - exponential shell, uphill, cut at (a - 3.5L), from previousradius (a - 3.5L)

2a radiusdefining exponent L.

LTYP=61 Dr - contrast, end-on view of arod ( not to be combined with spherical shells!)



2R -radius

For an “end - on” view of arod we have in the equations of model 18, g =f =p/2, so cos(g) =0, sin(g) = 1.

so herewe do F(Q)=F(Q) + (Dr )V 2‘]1(§—QR) where the latter term tends to unity as Q goesto zero.
R

Note that though the shape of the scattering does not depend on rod length L, it still affects the absolute intensity
through V = pR2L. HereweuseL = 1, so the“scale” for model 9ismultiplied by L?. For ageneral discussion, including
the interparticle structure factor for packed rods see: G.Oster & D.P.Riley, Acta.Cryst. 5(1952)272-276.

LTYP=71 Dr - Gaussian shell centred at (a+b)/2 - see notesin model 10
2b -radius
MODEL 9

Square operation, used immediately after MODEL 8.

LTYP=1 <de = Nx1048 1(Q) = scale* F(Q)2

wherethere are N particles cn3and Dr inmodel 8isin cni?2
MODEL 10

"Multi-shell" contrast for use with polydispersity MODEL 6, parameters are the same asfor MODEL 8, a
pair of recordsfor each step in the contrast profile.

NOTE- the square operation is handled automatically so, unlike MODEL 8, aMODEL 9 recordisNOT
required. You will be prompted for a choice of aquadrature method of integration ( or do K5 = -11).

NOTE- the program needs to know which radiusin the contrast is polydisperse. Thisis done by setting
one partial shift PS(j) to-2.0 where | correspondsto an R record. ( Do not turn this ONor OFF ! ) Other
radii in the profile may be kept fixed or may be constrained in the usual way, most often tied to the PS(j)=-2
parameter.

NOTE- until Feb 2002 the values of radii in MODEL 10 were left at the values last used by the numerical
integration for MODEL 6, i.e. the maximum values included, so to see the "mean" you had to look at
MODEL 6, not the MODEL 10 line with PSHIFT =-2.0. Since FEB 2002 the constraints routines are called
one more time after the calculations, with R = Rbar, so that MODEL 10 radii are now printed out at their
mean values.

NOTE that the LTYP=11,21,31,41,51& 71 cases are THREE parameter functions, depending on two radii a
and b and a contrast step. The least squares derivative calculations modify that already calculated for the
“previous’ radius. Inequationsbelow ¢ = (b-a) Anexample below shows how to use such models.

LTYP=1 Dr contrast (see(10-2) below )
2 a -radius
LTYP=11 Dr - contrast “fuzzy” shell, linearly increasing or decreasing, from previous radiusa.
2 b -radius
( shell volume, increasing ispc(6a’ + 8ac + 3¢?)/3, decreasing ispc(6a’ + 4ac + ¢%)/3)
LTYP=21 Dr - exponential shell, downhill to infinity, from previous radiusa [ALL EXPONENTIAL SHELLS
2 b= a+3.5L radiusdefining exponentia decay. NEED CORRECTION ! ]
LTYP=31 Dr - exponentia shell, downhill, cut at a+3.5L, from previous radiusa
2 b= a+3.5L radiusdefining exponential decay and cut off.

(shell volumeis4pL{a +2al + 2L -exp(-c/L)(b?+ 2bL + 2L.%)} )
LTYP=41 Dr - exponentia shell, uphill, from radius zero.
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2 3.5L defining exponent L
LTYP=51 Dr - exponential shell, uphill, cut at (a - 3.5L), from previous radiusb = (a - 35L)
2 a radiusdefining exponent L. ( Beware a and b are now opposite way around ! )
(shell volumeis4pL{a - 2al + 2L -exp(-c/L)(b?- 2bL +2L2)} )
LTYP=61 Dr - contrast, end-on view of arod ( hot to be combined with spherical shells! - see notesin model 8)
2R -radius
LTYP=71 Dr - Gaussian shell centred at (a+b)/2, with same material as rectangular shell from ato b.
2b -radius

The single particle form factor P(Q) is F(Q)2 where for a spherically symmetric particle of scattering length densityr (r) at
radiusr we have: (10-1)

_ o2 sin(Qr)
F(Q) = 4p g rir (1) I ar

When r (r) takes acomplex form, asfor LTYP=11,21,...51, this Fourier integral may be split into a sum of termsfor each
step or feature. For avertical step of upwards of Dr at radiusa, asin the sharp interface model, LTYP=1

F(Q) =-4p.Dr (sin(Qa) - Qa.cos(Qa) )/ Q° (102
If r (r) increases linearly from zero toDr between radii a and b, for LTYP=11, then:
F(Q) =4p.Dr { 2(cos(Qa) - cos(Qb) ) + Qasin(Qa) - Qb.sin(Qb) } / (Q'(b-a)) (103

To model amore diffuse boundary Gradzielski et al ( M.Gradzielski, D.Langevin,L.Magid, R.Strey,.
J.Phys.Chem.99(1995)13232-13238 ) used a symmetrical Gaussian distribution for r (r), which after approximating the lower
integration limit of (10-1) to-¥ givesan analytic equation for F(Q), used for LTYP=71,

F(Q) =4pDr .(b-a)exp{-Qt%/2} ( Rosin(QR) + Qt°cos(QRy) )/Q

where R, = (a + b)/2 and the Gaussian (r) = Dr exp{-(r-R,)%¥2t?} is normalised to have the same amount of material asthe

2 2
spherical shell betweenaand b by t = (b- R +(b- ) /12 » (b- &) . Theapproximatet isthe exact value for a
> Rt im
flat sheet, which FISH uses as a starting value and iterates twice ( the first time with 2t* in the denominator which speeds
convergence). The approximatet is assumed in analytic derivatives. Unfortunately the Gaussian shell isonly realistic for
awell matched “shell” contrast, and, since the integral for a“half Gaussian” appears not to be analytic, may not easily be
applied to “core” or “droplet” contrasts.

An alternative form, useful particularly in the polymer field, would be for r (r) to decrease exponentially (“downhill”) from
avalueDr atr=ato zero at infinity asr (r) = Dr .exp{-(r-a)/L} forr2 a, for which LTYP =21 uses:

(1+3Q°L*)sinQa + 2hQ°L’ cos(Qa)b (10-4)
(Q2L2 +1) P

4p .Dr
Q*(Q2L*+1)

F(Q) = geQa(hQLsin(Qa)- cos(Qa)) +

where constant h = +1. [THISISWRONG & NEEDS CORRECTING IN FISH — RKH 03/2004 ]

For LTY P=31 the exponentia istruncated by asmall vertical stepto zero at R = (a + 3.5L), by automatically adding aterm
(10-2) for the step, at the same time subtracting the remainder of the exponential from R = (a + 3.5L) toinfinity.

If the exponential inr (r) instead increases (“uphill™) from zero at minusinfinity toDr at r =a according tor (r) = Dr .exp{-
(a-r)/L}, then h =-1inequation (10-4). Again by adding and subtracting appropriate termsit is possible to truncater (r)
aR=0forLTYP=4lorR=(a-35L)>0for LTYP=51

Equations (10-2) to (10-4) were derived by RKH ( the latter two for the first time ?), and their results were extensively
checked by numerical Fourier transforms of trial profiles, against both FISH output and a separate program which
expressed the equationsin different ways. Thusthey are believed to be correct !

NOTE the SANSfor aparabolic profile (asfor a“polymer brush” on aflat surface) at a spherical interface appears not to
have an analytic solution, but may be approximated by a series of linear ssgments of LTY P =11 with appropriate
constraints. For the brush caser (r) = (1- (r-a)/c )2 and the exact shell volumeis 8pc(35a” + 28ac + 8¢%)/105, whilst for a
concave profiler (r) = ((r-a)/c -1)* and the shell volume is 4pc(10a° + 5ac + ¢%)/30.
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NOTE To generate adesired contrast profile it may be necessary to use some “dummy” shells. The example below isfor
alinear ramp up, aflat top, and alinear ramp down, as might be used for ahollow shell, vesicle, structure:

T 1P15S 1C 4N 5
W 1lK OIPOMS1IIY1 -6 -6 11 0 61 10 4
SCHULTZ POLYDI SPERSE 3 SHELL SPHERE LI NEAR/ FLAT/ LI NEAR - FOR VESI CLES

1 10 1 rh2-rh1=0 0. 000000E+00 0.000E+00 0.0 0. 00E+00
2 10 2 RlL 3. 100000E+02 0. 000E+00 -1.0 0. 00E+00
3 10 11 rh2-rh3 6. 000000E+00 0.000E+00 0.0 0. 00E+00
410 2 R 3. 250000E+02 0. 000E+00 -1.0 0. 00E+00
5 10 1 rh3-rh4=0 0. 000000E+00 0.000E+00 0.0 0. 00E+00
6 10 2 R3 3. 500000E+02 0. 000E+00 -2.0 0. 00E+00
7 10 11 rh4-rh5 - 6. 000000E+00 0. 000E+00 -1.0 0. 00E+00
810 2 R4 3. 650000E+02 0. 000E+00 -1.0 0. 00E+00
9 6 11 SCHULTZ SCA 5.000000E- 06 2.283E-07 1.0 1.36E-08
10 6 12 RBAR 3. 000000E+02 9.083E+00 1.0 7.94E-01
11 6 13 RO-SHIFT 0. 000000E+00 0.000E+00 0.0 0. 00E+00
12 6 14 SI G (RB-R0) 2. 000000E- 01 0.000E+00 0.0 0. 00E+00
13 8 2 head 1. 500000E+01 0.000E+00 0.0 0. 00E+00
14 8 2 tail 2. 500000E+01 1.244E+00 1.0 2.08E-02
15 99 1 FINISH 1. 000000E+00 0.000E+00 0.0 0. 00E+00

1 1 cl8el2el? CALC 2 BKG 0 POL 3 SSE= 8.816E+03

11 2 6 13 14

1.00000 -1.00000 -1.00000 0.00000 (R1=R3- head - tail )
11 4 6 14 14(

1.00000 -1.00000 0.00000 0.00000 (R2=R3-tal )

11 8 6 13 13

1.00000 1.00000 0.00000 0.00000 (R4=R3+head)

11 7 3 1 1

-1.00000 0.00000 0.00000 0.00000 ( (rh4rh5) =- (th2-rh1))

1. OOOE+00 3. 282E-06 2. 000E-01 4. 000E+00 2. O0O0OE+03

The shells defined by parameters 1& 2 and 5 & 6, with zero contrast, are needed for the following LTYP=11 shells. The
polydisperse radius is parameter 6, marked by the -2.0in the partial shifts column. The other radii are al tied to it by
constraints.

MODEL 11
General polynomial fit (see also MODEL 20) or generate a constant in P(Q), or a"delta”’ function at the
origin.
LTYP=1 A 1(Q= I(Q+A+B*Q+CrQ**2+D*Qr*4 ... + G*Q**7
2 B
3 C
etc......
8 G
LTYP=21 A 1(Q=A one record only version, to generate P(Q)=constant, is useful before a
multiplicative S(Q) which needsto berefined or tested.
LTYP=31 A
32T tolerance ( may not berefined ) Definesa"deltafunction” at Q = 0 intended for

inelastic data, (but isreplaced by MODEL 4, LTYP =11), does 1(Q) =1(Q) + A/(2T) when ABS(Q) £
ABS(T), soif central Q valuesare at -D and +Dwhere Dis alittle less than T the area of the delta function
is1.0

MODEL 12
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Guinier radius (LTY P=1) or diffuse Porod interface (LTY P=11) or diffuse Porod interface with a diffuse
coating of thicknessH.

LTYP=1 A scale (analogous to model 1) 1(Q)=1(Q) + A* exp(-Q2R2/3.0)
= R Guinier radius
LTYP=11 K=2pS Porod surface with diffuse interface. Note aninfinite flat sharp interface

convoluted with a Gaussian has asigmoidal profile which scatters exactly Q® timesthis. Theinclusion of a
Lorentz 1/Q° term for arandomly oriented flat surface involves some approximations for real surfaces,
which require further investigation ( RKH 2/4/98).

= s I(Q=1(Q + Kexp(-Q%H)/Qt
LTYP=21 K=2pS diffuse Porod surface with separate surface layer of different scattering length density.
=22 D, Scattering length density difference (substrate - solvent )
=23 S diffuseness of substrate.
=24 D, Scattering length density difference (layer - solvent )
=25 H thickness of layer
=23 S, additional diffuseness of layer. ( Notethat s, is convoluted withs; in the D% term.)

The scattering equation was derived ( RKH 19/3/98) from the shell/core/shell flat sheet case (see MODEL 28, LTYP=21)
convoluted with Gaussian functions, by letting the core thickness tend to infinity. FISH uses analytic derivatives. (
Some further investigation of the validity of the Lorentz 1/Q’ isrequired.)

K 2Q? 2+5,2)Q? (25 .245.2)02
1(Q) = |(Q)+§((D1- D,)?e %Y +D,%e ® )% +2(D, - D,)D,cos(QH)e "2 /2)

MODEL 13
Structure factor for volume fractals, in Teixeiraformulation JAppl.Cryst. 21(88)781-785, where
"normalisation” R**-d matches Kjems and Sinha's C/(d-1). The Q**-d dependenceisfor the range
1/z< Q< 1R. Compare MODEL 26 the form factor for surface fractals.
SQ=1+ QR4 d&(d-1) (1 + (Q2)2) LD/ Zsin (d-D)atan(Q2)}
1(Q =1(Q*S(Q
LTYP=1 d - fractal dimension, 2to 3
2 Z- aggregate size
3 R particle radius (for normalisation assuming aggregates of spheres).

LTYP(1)=11 adds 4 extrarecords for Andrew Allen’s cements etc. model, see A.J.Allen, J.Appl.Cryst. 24(91)624-634 and
Harwell Report MPD/NBS/361 (but beware typos. in the equations). NOTE thisisthen a structure factor * form factor !

14 Dr (in 1.0e10cm**-2)

15 f - overall vol fraction of fractal phase

16 f. - local volume fraction

17 S- rough (max) surface area ( cm* -1)
MODEL 14

Gaussian coil for monodisperse (LTY P(1)=1) or polydisperse (LTYP(1)=11) polymers ( e.g. for partialy
deuterated polystyrene), for awormlike chain (LTYP=21, or better LTYP=71 & 81), for a Star polymer
according to Benoit (LTYP=31) or Dozier (LTYP=41). Generally no calc of b(Q) exceptfor LTYP=71& 81.
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LTYP=1 1(Q=0) =l Debye Gaussian cail 1(Q) = 1(Q) + 5. 2(y-1+exp(-y) )/y2

2 Rg radius of gyration wherey = (QRg)2

For adilute solution 1, =fV(Dr )> whereV isthe volume of polymer in one scattering object ( the coil) and
Dr isincm? f=c/d and V =M/ (d.N,), where c is the concentration of polymer ( g.cm®), of molecular
weight M ( g.mol™®) and density d ( g.cm’®).

For ablend of volume fraction X of d- and h- polymers |5 = X(1-X).V(Dr )2. Corrections are possible for

differencesin density and molecular weight of the d- and h- polymers, seee.g. G.D.Wignall & F.S.Bates,
J.Appl.Cryst. 20(1987)28-40 and referencestherein.

LTYP=11 o Polydisper se Gaussian coil I(Q=1(Q) +15.2(y-1+(1+UyyYU (1 +U)y?d)
12 Rg radius of gyration wherey = (QRg)Z/(l +2U)
13 U index of polydispersity, assuming Schultz distribution, U =1 - Myy/Mp

Note the program takes |U| to avoid numerical problemsand if |U[<0.01 reverts to the monodisperse model.
LTYP=21 1(Q=0) exactly asfor aGaussian coil. Worm-like chain

22n givestotal chainlengthL =n/

23 ¢ statistical chain element length

24 Rax cross sectional radius of gyration of the chain, assuming a Gaussian scattering density
distribution.

25U index of polydispersity, as above.

Thisis based on the Kratky -Porod wormHlike persistence chain model of M.Ragnetti & R.C.Oberthur,
Colloid & Polymer Sci. 264(1986)32-45. See dso R.G.Kirste & R.C.Oberthur in Glatter & Kratky "Small
Angle X-ray Scattering”, 1982, p407-411. The latter reference should be studied carefully before using
thismodel. Notethat separate equations are used in different parts of the Q range, there may be
"transitions" visible at some of the junctions, which are not smoothed or blended here.

For Q¢ < 3.1 the Debye Gaussian coil is modified by additional terms to become the form factor of aworm:
like chain of Sharp & Bloomfield. Theradius of gyration of the coil is given by RGZ =n¢2/6. This partis

reported accurate to better than 1% for n>10. The higher Q parts are valid only for an infinite chain, say
n>50 (see Fig. 8 in the Glatter & Kratky article) and rely on calculations of Des Cloiseaux for aninfinite thin
chain. For Q¢ < 9.4 an analytical approximation of numerical resultsisused. For Q/ < 13.4 and Q/ >134
further analytical approximationsto adamped oscillation proposed by Des Cloiseaux are used. ( These
latter two equations had incorrect Q dependencies, so were corrected - confirmation of this else where has
not yet been found.)

All four terms are multiplied by exp( -Rax2Q2/2) to allow for the thickness of the chain (note the 1/Q for a
long rod is already there), which is assumed to have a Gaussian scattering density profile (see Glatter &
Kratky p415, eqn 53). Polydispersity U isapproximately corrected for by multiplying by the ratio of the
polydisperse to mondisperse Gaussian coils given above.

When LTY P=31 we have the Benoit extension of the Debye equation for anf-branched star polymer. The
theory assumes that the monomer-monomer distribution isindependent of whether the chain joining them
passes through a branch point. For further discussion and a case of star branched PE in the melt, see
J.C.Horton, G.L.Squires, A.T.Boothroyd, L.J.Fetters, A.R.Rennie, C.J.Glinka& R.A.Robinson,

M acromolecul es 22(1989)681-686; the original referenceis H.Benoait, J.Polym.Sci. 11(1953)507

LTYP=31 1(Q=0) =l 1(Q) = 1(Q) + 9. 2(y-1+exp(y) + (f-1)(1-exp(y)) /2 )/fy 2
32 Rg radius of gyration wherey = f(QRg)2/(3f-2)

33 f the number of branches. Note when f=1 the Debye coil equation is obtained.
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At small Q, the Guinier term isidentical to a Gaussian coil of radius Rg (i.e. independent of f) and so
[(Q=0) isthesame asLTYP=1withM =f.M 4, where M ., isthe molecular weight of asingle arm.

The Benoit equation does not work for some (or all ?) star polymersin solution where strong interparticle
and osmotic effects occur even well below c*. Dozier et.al. propose a "functional description” which
combines a Guiner radius of the whole star at low Q with apower law "mass correlation” function within
the star ( note similarities with volume fractal in MODEL 13). A number of scaling relationships should
exist between the various molecular parameters, consult - W.D.Dozier, J.S.Huang & L.J.Fetters,

Macromol ecul es 24(1991)2810-2814; also D.Richter, O.Jucknischke, L.Willner, L.J.Fetters, M.Lin,
J.S.Huang, J.Roovers, C.Toporovski & L.L.Zhou, J.de Physique IV, Collogue C8, 3(1993)1-12.

LTYP=41 Nf - scae
42 Rg - radius of gyration
43 (a / Nf) - relative scale of fractal term
4 X - exponential damping length in mass fractal

45 n=1/(m+1) - Flory exponent, 3/5in good solvent, 1/2 in theta solvent (i.e. m=2/3to 1)

4pa  sin(mtan *(Qx))o
Qx(Nf)  (1+Q%?)™2 4

P(Q) = Nf g%xp{- Q2R?/ 3} +

Note this model has NOT been programmed with the usual attention to overflow problems at extremes of Q
etc. so useit with care!

Scattering from diblock copolymer L.Leibler, Macromolecul es 13(1980)1602-1607, eq IV-2 to IV-8.

LTYP=51 scale=??7?x Dr 2 needs checking - is probably as per LTYP=61 below !
2 N monomers per molecule
3a = length per monomer ( Rs*=Na’/6)
4f =fraction of molecule of one scattering type

5 C = interaction parameter ( per monomer ?)

Scattering from H-shaped polymer, with deuterated tips ( a development of Leibler’s diblock copolymer).

LTYP=61 scale=VDr ? whereV = volume of whole molecule = MWI/(F puiNa),
Dr = scattering length density difference.
2 Rg - radius of gyration of deuterated end of arm

3f,=4f, =fraction of molecule deuterated
4 f, = fraction of moleculein backbone (or crossbar ) =f;
5 ¢ = interaction parameter ( per monomer ?)

Scattering from H-shaped molecule with deuterated tips, see D.J.Read, Macmol ecul es 31(1998)899-911,
noting that M in equation (68) should be number of monomers z in each section of the molecule. The
general formof the equation for an incompressible systemis:

SDDSHH - SDH2
Soo + S +2Sp4

Snc(Q) =N(b; - by)° =N(b; - b,)*S (3,QR;) =VDr *S'(;,QRy)

-1

| & 1 5 9
Q=@ %5
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where there are N polymer molecules per unit volume and the by are scattering lengths of monomers. Itis
more convenient to work in scattering length densities and fractions of the molecule in each part, f, for one
deuterated tip, f, for the remainder of each arm, and f; for the cross-bar. The Rg of parts2 & 3 are scaled as
for Gaussian coilsi.e. Rg;= Rg;,Qf,/fy) etc.

Kholodenko Worm- like chain. A.L.Kholodenko, Macromol ecul es 26(1993)4179-4183, for an example of its use see
P.Hickl, M.Ballauf, U.Scherf, K.Mullen & P.Lindner Macromolecules 30(1997)273-279.

For long thin rods 1(Q) ™ Pworm(Q)PaxiaL(Q). After slight rearrangement of the original equations (using L =n/ ):

LTYP=71

Ruvoru(Q) = 8‘1 f (y)dy [6/2/03 corrected sign of 2™ term] where for
Q£§ f(y)= sinh(Ey) E= g_- 28l 0 gl/Z
/ Esnh(y) 8 &304
) . o U2
Q>% f(y)=w F:gﬁ%g - 13 [itrealy issin not sinh!]
sinh(y) £30 ¢4

These equations go smoothly between Gaussian coil, Q" and Q2 behaviour for appropriate values of n
and /. For largen/ as expected at higher Q, p ® P Tria and error will be required for different
QL

WORM
combinations of n and ¢ giving the expected contour length L = n/, especialy if the fit is"stuck" in one of
the limiting forms. Check the value of the SCALE parameter to find a"best fit". The model will ask for two
numerical integration schemes, the first for Prop(Q) and the second for the polydispersity in L. Y ou will
also be asked for Wmax to determine the maximum L to be included.

The codein FISH carefully allows for thelow Q limits and for potential numerical over flow or under flow
situations. The Schultz distribution used here isnot stored in the POL workspace (nor pre-processed by
POL SET) thus this model may be repeated or even added to polydisperse spheres. b(Q) corrections are
calculated.

LTYP=71 hasaradia Guinier form for PaxaL (Q) :

Paaa (Q) = N(r; - 1 5)*(AL)? exp{- 1 } where for auniform scattering length density, in
. Specifically for a

general, the mass per unit length , _ M _givescross sectional area p = M
L
LNA r BULK

uniform cylinder A = 2pRax?, though the following model might then be more appropriate. The scaling
here may be presented with various other molecular parameters using the equationsin Model 14 LTYP=1,
especially if the Q" limit of Pyorw(Q) isincluded.

LTYP=81 hasan axial core/shell cylinder for which (c.f. modd 8, LTYP=61):

gglRl) +(r,- ra)pRzzL%ngZ) » Paxia(Q) = NF 0 (Q)°

For numerical convenience FISH calculates SCALE x (V.P(Q)) in order to make the fitted SCALE either
constant or to vary more slowly with changing shape of the worm.

AXIAL(Q) (rl' rZ)pRl L

SCALE =10%f (r 1- r 3> wherefor N worms per unit volume, core volume fraction

f = N.(2pRaxXn¢). NOTE - since we do not know M, FISH assumes Rax is for a cylinder, for which
R=v2.Rax. If you do know M, then calculate the proper SCALE = (2pRaxX) SCALEqg/A where A isthe
cross sectional area described above. Asusual r 1& r 3 are scattering length densitiesin cm* for the
worm and solvent, molecular dimensionsarein A, 1(Q) incm* and Qin A™*. NOTE thisis NOT the same
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SCALE asthe normal rod model 18 1, this choice makesit simpler to add a "wet shell" to aknown "dry
core".

72n givestotal mean chain contour length L = n/

73 ¢ statistical chain element length (Kuhn length ) = 2 x (persistence length).

74 Rax cross sectional radius of gyration of the chain, assuming a Gaussian scattering density
distribution. If Rax < 1.0 A the cross sectional term is set to 1.0, giving just the infinitely thin worm.

75 not used.

76 not used.

77 polydispersity (s/Lyean) in chain length (with fixed 7 ); monodisperseif (S/Lygan) < 0.01

Kholodenko wormt like chain with core/shell cylinder. Beware this model has alot of parameters, whole
families of best fits may exist even with ideal data.

LTYP=81 SCALE=10%fcore (r 1- r 3)?
where for N worms per unit volume, f core = N.(pR:"n¢)

82n givestotal mean chainlengthL =n/

83 ¢ statistical chain element length (Kuhn length ) = 2 x (persistence length).

84 R, radius of core.

85 DELR shell thickness such that outer radius R, =R, + DELR

86 CONTRAST =(r 2-r 3)/(r 1-r 3), wherer 1,r 2,r 3 arefor core, shell & solvent. NOTE again that
thisisNOT the same asrod model 18 1, and that for a hollow shell the value here becomesinfinite. In
practise try using some large number like 100 or 1000 for a hollow worm.

87 (s/Lyean) polydispersity in chain length, for a Schultz distribution of contour lengths with fixed 7,

taken as monodisperseif (S/Lyegan) <0.01

MODEL 15

Smearing for instrument resolution. Thisis normally done AFTER all other calculations, before the
MODEL 99 record. Partia shift PS(i) has no effect for this model, which cannot be refined, except by trial
and error adjustment of RSCALE Both the calculated data and its derivativesin the least squares are
Smeared.

Except for LTY P =41 theresolution function is divided into NSIMP intervals over +3.5 standard deviations
and Simpson'sruleis used to convolute the calculated intensity 1(Q) ( but not the background in WRK ).
The dataand its derivatives are required at NSIMP Q values for each point in the data. These are found
either by interpolation of local cubic functions through groups of 4 pointsin I(Q) or more slowly by exact
calculation. Outside of the original Q range exact calculations are always made for 1(Q) and its derivatives
asthelocal cubic may not extrapolate well. NSIMP must be an odd number >5, e.g. 21 Themain FIT
MENU option 2 allows the unsmeared data to be stored in a separate dataset. LTYP =41 usesasupplied
resolution function (e.g. vanadium datafor quasi-el astic scattering).

NOTE set RSCALE to zero to turn off the smearing.

LTYP=1 RSCALE Gaussian resolution function estimated for typical LOQ conditions
2 NSIMP (using old LETI detector and | =2-10A), width is multiplied by RSCALE.
LTYP=11 RSCALE as above, but exact calc at all pointsinstead of cubic interpolation.
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12 NSIMP (this isthe best option to try first, use RSCALE = 1.0, NSIMP =21.0)
LTYP=21 RESOL Constant resolution of FWHM= RESOL, note RESOL=2.35s
22 NSIMP
LTYP=31 RESOL as above, but exact calc at all pointsinstead of cubic interpolation.
32 NSIMP
LTYP=41 RSCALE Uses resolution curve stored in set 9 (hard wired as |V = 9 in code), assumed on
12 not used bins smaller or roughly equal to those of the data. The function may be
broadened

or narrowed by afactor RSCALE. Inaloop over Q = Qqatg + RSCALE X Qg the calculated 1(Q) is

interpolated by alocal Lagrange cubic function, and the convolution summed by the trapezium rule. The
resolution datais used over the range determined by NC3(9) to NC4(9).

LTYP=51 RSCALE Resol ution function estimated (Apr 96) for LOQ ORDELA detector, | =2.2-10A.

Uses a Gaussian “ stretched” in tails ( see model 27, LTY P=71) parametrised by fitsto LOQ data simul ated
at selected Q values. Resolution is multiplied by abs(RSCALE). Negative RSCALE uses cubic
interpolation except at ends of Q range, positive RSCALE uses exact calculation at all points.

52 NSIMP
LTYP=61 RSCALE asabove, LOQ ORDELA detector | =6-10 A, these needs redoing for “new”
Ordelamulti-wire detector () which has better resolution— meanwhiletry say RSCALE = 0.8
62 NSIMP
LTYP=71 RSCALE asabove, LOQ High Angle Bank - initial estimate- | =2.2-10A.
72 NSIMP

LTYP=51,61,71 assumes asample diameter of 8 mm. Approximate values of abs(RSCALE) to suit other
beam diameters, are given in the table below, based on comparisons of simpler calculations of mean
FWHM. RSCALE variesinaroughly linear fashion with Q.

Sample diameter = 10mm 12mm 14mm
ORDELA low Q 1.045 1105 117
: high Q 1.035 1.085 114
HAB low Q 1.060 113 121
“ highQ 1.035 1.08 113

MODEL 16

Teubner and Strey ( J.Chem.Phys. 87(87)3195) ( no calc of b(Q)) This assumes

g(r) = (d/2pr)exp{-r/Zt sin(2pr/d) i.e. asinusoidally varying domain scattering length density with the
oscillations damped out by a correlation length z. No deductions may be made about the three
dimensional nature of the structure involved. The model will "fit" awide range of interacting particles or
bi continuous/porous structures as long as the diffraction pattern has afairly broad peak.

LTYP=1 1(Q=0)=1lo 1(Q)=1(Q)+ lo/[ (1-lo/1m).{(Q¥QnT -1)* + lo/im ]
2 I(maximum) = Im

3 Q(pek) =Qm see below to relatetheseto d and z
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Teubner and Strey, second form, thisis one place where LTY P must be correct on all three records!

LTYP=11
21
31

11(Q=0) 1(Q)=1(Q)+ 1(Q=0)[ 1+ A.Q2+B.Q4]
A/l(Q=0)
B/I(Q=0)

Teubner & Strey correlation length z and domain size d are given by:
2B A

2 4B
a2po’ _B A
&€db ~ 2 4B

N

z QMZ(IM /(I M " Io))]j2 - %QM2

1
N

QM2(| M /(IM - Io))y2+%QM2

8pf (1- f)(Dr)* _ 8pf (1- f)(Dr)* 2 12
I, = = Iy - I, /(-1 - 1
0 Z((zp/d)Z +Z-2)2 '\/EQM3| " ( M 0){( M ( M 0)) }

wheref and (1-f) are the volume fractions of the phases. Note that in the limit k ® 0 the Debye model (see
below) is obtained and z = a5, however Qm becomes imaginary so model 17 must be used instead.

MODEL 17

Debye random two phase / Wang et.al. The Debye model for random two phase structure has
g(r) = exp{-r/ag) whichgivesA = 2a02, B:a04 inthe T& S second form above. Itisalso aspecial case of a

model proposed by Z.-Y.Wang, M.Konno & S.Saito, J.Chem.Phys. 90(1989)1281-1284, using g(r)= exp{-
rlag} cos(Qgr). ( Thefull model appears similar to one of the terms in the Cahn-Hilliard scheme for spinodal

decomposition. )

LTYP=11 Iz Q)= 4p<hZap ¥ (1 + Qy/Q)/(L + 3 AQ+Qu)D +
12Q, (1- Q1 +3,2QQp))2
13 %

Correlationlength z=3a,/(1+ aonOZ)

Thel(Q) aboveisasgiveninthe original paper, in which it is noted that 1(Q) can tend to go negative at
low Q! Only in some cases does |z approximately equal 1(Q=0).

1z=8p<h 2>ao3/(1+a0Q0)2

Set Qo=0 to obtain the exact result for the Debye model (also see MODEL 27, LTYP=1) for which

1(Q) = 1(0)/ (1 +28,2Q2)2 and 1(0) = Iz = 8pf (1 - f)(Dr )2a,>

MODEL 18

Rods ( or discs) or oriented rods, of full length L and radius R. For N randomly oriented rods the form

factor PQis P(Q) = N¢j F2(Q) sin(g)dg

sin(+ QL cosg) 2J,(QRsing)
4+ QL cosg QRsing
function of thefirst kind, V = pRPL and we must integrate numerically over angle gbetween the Q vector

and the axis of therod. FISH will prompt for a choice of integration scheme (or do K5 = 1), see noteson
mode 6.

where F (Q) = (Dr V inwhich J,(x) isthefirst order Bessel




LTYP=1lor11

a ~r W N
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Note that F(Q=0) = (Dr )V and that further similar terms may be added to F(Q) for “core plus shell”
systems. (Seel.Livesey, J.Chem.Soc. Faraday Trans 2, 83(1987)1445-1452)

SCALE -rigid, core/shell rod (or disc) with ashell at theend (LTY P=1) or without ashell at theend
(LTYP=11) of therod.

R-radius (NOTE thisisthe OUTER radius for core/shell cases, NOT the inner one.)

LENGTH

DR - shell thickness

CONTRAST=(r1-r 2)/(r 2-r 3)
wherer lisfor inner region, r 2 for outer region and r 3 for the solvent.

Set DR and/or CONTRAST to zero for auniform rod. For ahollow cylinder CONTRAST = -1. Seealso
CONSTRAINTS 17 &18.

SCALE =10%f (r - r 5 wheref = volume fraction, scattering length density r isin unitsof cm2, and rod
radius R and LENGTH are assumed to beinA. SCALE isthusinvariant for agiven system and consistent
with the approach used for polydisperse spherical particles. SCALE has the same meaning for both
uniform solid and core/shell rods, but note that it depends on the shell scattering length density, so it will
vary if CONTRAST isadjusted !

(Before Aug 96, earlier inthe TEST version,, SCALE = 10'48N(r 2-r 3)2 = 10'24(r 2-r 3)2f/(pR2L) where
thereare N cylinders per cn?’.. Defined in thisway SCALE changes rapidly with the dimensions L and R of
the cylinder which was not good for the fitting procedures. Prior to March 93, LTY P=1 had no shell at the
end and LTYP =11 did not exist.)

(Ratio b(Q) is calculated, so this P(Q) may be combined with a structure factor. Between Aug 96 and Nov
2000 this was however not calculated correctly, due to amistake in the scaling of F(Q), which made S(Q)
very small.)

LTYP=210r31 SCALE=10%F (r ,-r ) Rigid rods, with or without end-cap, oriented by shear flow.
2R outer radius, defining volume fraction F = NpRZL
3L Length of rod.
4DR shell thickness

5CONTRAST =(r 1-r 2)/(r 2-r 3),asfor LTYP=1,11
6 G=G/D, Ratio of shear gradient G to rotational diffusion constant D,, see constraint 14.

Y
8dy

angle of Q to flow direction ( degrees)

If dY > 0 then the program will also integrate over (Y -dY)to (Y +dY)

Thisfollows exactly J.B.Hayter & J.Penfold, J.Chem.Phys. 88(1984)4589-4593 for Couette flow where the neutron beam
passes twice through the sample.

P(Q) = off @ Ps(@.f.O{F2(Q.9") + F2(Q.g")} sin(a)dg

where F(Q) isasabove, cosg® = singcosf cosY +cosgsinY

and therod orientation functionistakentobe: p_(q,f ,G) =

(1- cos2f )(1+sin’q cos2f ,)%?
4p (1- sin®q cos2f jcos2(f - f ))?

inwhich 2f, =atan( 8/G) and F(Q) isas given above. Notethat if G = G=0then 2f,=p/2 and P«q,f,G) = 1/(4p). AsG
increases the angular distribution narrows and the most probable angle moves towards the flow direction, but never
reachesit dueto the effects of rotational diffusion, e.g. at G= 10, 2f, = 0.2148p.
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When Y =90° ( Qisroughly perpendicular to the rod axis) we have g" = q and g = (p— q) so the integrals and range of
integration simplify to:

Y (1- cos2f )
P(Q,Y =90°) =29 (1- sin’q cos2f ,)%?

F?(Q)sinqdq

Some experimentation with the numerical integration schemes used in FISH will be required, especidly if L/R islarge, and
Gislarge. Automatic integration routines are little use for the dq integral as the functions oscillate rapidly, a Simpson
rule of at least 359 points seems best. The df integral seemsto behave well with an adaptive Gauss/Kronrod rule. If the
dY integrationisused at al, a4 point Gaussian quadrature should suffice, except perhaps at very small Q and large G
when more points might be better. Except at'Y =90 the calculations are VERY slow, the Q range and number of data
points should be restricted. Use K4 =n toinclude only every n’th point in the least squares. Therod length determined
depends very much on the constraint applied to Gviaan approximation for D, (see constraint 14). Itispossiblein FISH
tofitsayY =0and Y =90 data sets simultaneously, with G constrained to the applied shear gradient and the viscosity
of the solvent. The program will run faster if the slow Y =0 calculation isfirst in the model parameters, so the derivatives
calculated for the larger number of tied ( PS(i) = -1 ) parametersin the second data set will be for afaster Y =90 case ( -
else wise turn OFF tied parameters in the second set if they are not actually adjusting, use n=TIE to reintroduce a
constraint).

(NOTE At present only F(Q) and not F(Q) is calculated, so ratio b(Q) to modify any S(Q) isnot applied)

LTYP=41lor51 Maier-Saupe “nematic phase” distribution of rigid rods, with or without end-cap.
2-8 Asfor sheared rods above.

Using the same coordinate system, the orientation function P¢(q,f,G) above becomes Pys(g,m) where the
distribution of angles of the rod to the vertical q isgiven by:

mcos’ q mcos’ q

e e

PMs(qaf :m) = PMS(q'm) = p/2 2 . = 1 2
4p (\3 emcosq Slnqdq 4p (\gemx dx

where all anglesf are equally likely. The larger the value of mthe greater the degree of orientation,
numerically amaximum of m ~ 50 is possible, whilst m < 0.1 gives an amost random distribution.

Thelack of f dependence allows simplification of theintegral for P(Q) whenY =90, Q isparallel to the
averagerod axis (i.e. the opposite to the sheared rods above ! ) andg=q:

P(Q.Y = 90°) = 4p " Pys(a,mF *(Q)sinqdg

The Maier-Saupe distribution is used for anematic liquid crystal by F.Hardouin, Gsigaud, M.F.Achard, A.Brulet,
J.P.Cotton, D.Y.Y oon, V.Percec & M.Kawasumi, Macromol ecules 28(1995)5427-5433, though their equation (9) for
P(Q,Y =0) iswrong ! They cite the Maier-Saupe distribution as being from P.G.DeGennes, “The Physics of Liquid
Crystals’, Oxford Press, 1974, p43. The latter mistakenly relates the normalising integral in the denominator of Pysto an
error function. Note that mis a positive number, not negative.

LTYP=61lor 71 “End - on view” of Maier-Saupe distribution of rigid rods, with or without end-cap.
2-8 Asfor sheared rods above.

In the Hayter-Penfold coordinates ( the beam goes alongy, the vertical isz, Q isin the x-z plane) we now define the
Maier-Saupe distribution for angle b between the rod axis and the y direction, and angle a between the rod axis and the
x-zplane. As before the angle between the rod axisand Q isg, but now cosg= sinb(cosY cosa - sinY sina) =
sinbcos(Y -a), so that the scattering is, as expected, independent of Y .

P

P(Q) =4¢).. Q.. Pus(b.MF?(Qg)dbda

Notethe LTYP=7 & 8linesare till needed, thevalue of Y isignored (set zero internally), though an integration will be
carriedoutif dY * 0.

When misvery small P(Q) isamost the same as for the previous model, withmsmall also, and of course the same as for
LTYP=1or 11 therandomly oriented rod. Whenmor Gisvery large, therod radius very large and the rod length small,
then any of the oriented rod model results may be compared with model 28 for thin interfaces.
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MODEL 19

Correlation hole structure factor. Thisassumes g(r)=0 for r<h and g(r)=1 for r>h, an exclusion volume of
radius h about some object, as proposed by deGennes.

LTYP=1 Hole volume fractionh Q) = 1+ 3h[Qhcos(Qh) -si n(Qh)]/(Qh)3
2 Holeradiush 1(Q) = (Q*S(Q)
MODEL 20

1(Q)=1(Q) + A*d\‘ where A and N may be determined, useful to add in a Q-4 background etc. (see also
MODEL 11). UsesFORTRAN for Q**N, so N must bevalid for ** operation.

LTYP=1

MODEL 21 (Compare MODEL 24)
Ellipsoid of revolution of radii A, A, and C=X*A. Thisrequiresanumerical integration for I(Q)

LTYP=1 SCALE 1(Q) = 1(Q) +SCALE(‘5/2 F 2(u)sin(a)da
=2 A radius where  F (u) = 3( sin(u) -u.cos(u))/u3
=3 X axia ratio and  u=QA(sina)+X2%co0sa))”2

Alternatively change the variable to p=cos(a) and integrate from zero to one. ( calculatesb(Q) so can use
with structure factor).
MODEL 22
Hard sphere structure factor, Percus-Y evick eguation, as solved analytically by N.W.Ashcroft and
J.Lekner, Phys.Rev. 145(1966)83-90, multiplies previous 1(Q). Notefirst peak is at approx Q=3.5/R.
LTYP=1ETA volume fraction of dispersed spheres
=2R radius of hard spheres.

Hard sphere with square well, according to R.V.Sharma & K.C.Sharma, Physica A89(1977)213-218. How thisrelatesto the
"Baxter sticky hard sphere” S(Q) (of later date) | am not sure as | have not been able to find the actual
equations for the latter. [Thanksto R.Triolo for pointing out the Sharma paper and cross checking results

here]
LTYP=11 ETA volume fraction of dispersed spheres
=12 R radius of hard spheres.
=13 eps/kT depth of square well, attractiveis negative.
=14 lambda square well extends tolambda x diameter

MODELS23& 25

Structure factor for charged spheres. MODEL 25 has an extratwo records to add in a critical scattering
term ( note not same as model 7 asthe extra+1 thereisavoided). If LTYP(1) = 1 the Hayter-Penfold one
component macroion (OCM), RMSA, model is used (with penetrating background), J.P.Hansen &
J.B.Hayter, Mol. Phys.46(1982)651, J.B.Hayter & J.Penfold, Mol.Phys. 42 (1981)109-118. Thanks are due to



LTYP=1or 11
2
3
4

MODEL 24
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J.Penfold for allowing his code to beincluded directly in FISH and to C.Fagotti for implementing it and re-
parametrising the equations. LTYP(1) = 11 gives the GOCM model of L.Belloni, J.Chem.Phys85(1986)519

Sphere radius
Q charge (electrons) per sphere
AKK inverse Debye screening length ( A-1)

ETA volume fraction

(model 25 only)  10(crit) S(Q) + 10(crit)/(1+22Q2)

z correlation length for critical scatter

AKK=1/rp where rp2 = egK RT/(2r Na 2e2l)

I=ionic strength= 0.5 S(m.,.Z|.2 + mlz) where m = molality

eg. foral:1electrolyte, I=m, at 0.1 molal in water at 25°C, relative permitivity K =78

rp2 = (885x10-12C2N1n2) 78 (8.31K " Imoi 1) (298K (10204 22

2 (10%gnT3) (6.02x1023mol-1)2 (1.6x10-19C)2 (0.1molkg 1)

sorp=96A, AKK=010A"1

Two shell ellipsoid (compare MODEL 21) If theLTYP(1) = 1 then (outer radius/ inner radius) is constant
at all points; for LTY P(1) = 11 the outer shell has a constant thicknessof d LTYP(1) =21 or 31 are
specially constrained cases of LTYP(1) = 1 or 11 respectively, used by C.Fagotti for swollen micellar
systems. In these cases simple physical parameters are used, viathe CON(i) array to compute the
scattering, see Appendix C. Note you will be prompted for a choice of numerical integration method, see
notes on model 6.

LTYP=1,11,21,31 SCALE VT2 2 9%  NOTE thisisfor the OUTER step !
2 R1 inner radii are R1: R1: X.R1
3 X X=1for sphere, X < 1for oblate, X >1 for prolate
4 R2 (if LTYP=1), d(if LTYP=11)
5 coefficient of 3j1(ug)/ug, NOTE thisisnot tied to the other parametersin any way :

(but see CONSTRAINTS 15, 16 & 17 which will do thisfor LTYP(1)=11)
FLTYRD=L  [((r1-12)/ (21 9)RY/R]

ifLTYPD)=11 [((r1-r2)/(r2-r3 )XR13/ ( (R1+0)2(R1X+a) )]

Weneed: | (Q) = I(Q)+np(‘5F2(Q,m)dm where:

FQM) =Veore3(r 17 231(up)/ug + Viota3(r 2t 932Uy

= (4p/3)(r o IXR3[ 3iq(U)/up + 3R/RY3((r 1-12) / (r 2-1 3) ) ja(up)/uq ]
inwhich u1=QRq[ (1'H2) +X2L12]1/2

Up = QR (1419 + XA2]*



A

j2(u) = (sin(u) - u.cos(u) )/u2

andr 1,1 o, r gare the scattering length densities of the core, outer shell and solvent respectively.

For LTYP(1)=11 FQM) = (4pi3)(r 21 Ry AR X+ F(u)/up +
{((r1-r2)/(r2-13))R3X/ Ry + DRX + ) )} g (up/ug ]
whereuq isasbeforeand us=Q[ (1- uz)(Rl + 0)2 +(RX + 0)2u2]1/2

MODEL 26

Approximate form factor for surface fractals, see e.g. TeixeiraJ.Appl.Cryst. 21(88)781-785 or Schmidit et.al.
J.Chem.Phys. 90(89)5016-5023, derived in H.D.Bale & P.W.Schmidt, Phys.Rev.Letts. 53(84)596-599. Thisis
only for Q >> 1/z where zisthe average pore or object size. Compare MODEL 13 for volume fractals.

1(Q=1(Q) + pDr 2S G(5-dg) sin{ (ds-Hp/2} @ (6-ds)
LTYP=1 scale
2 dg surface fractal dimension, for smooth surfaceto rough surface, 2 <dg <3,
scattering at high Q goes approximately as Q"4to Q-3

For dg=2 the Porod limit is reached and scale = p10'32(Dr )ZS withDr in cm-2 and surface area per unit
volume, S,incm-1 [ The meaning of Sfor higher values of dsisnot clear ???] A diffuse interface may
have a steeper gradient than Q'4, see the modified Porod of MODEL 12.

LTYP=11 SVincm? Andrew Allen version, see MODEL 13
12 D Fractal dimension
13 Dr in 10" cm*? (NOTE - won' t adjust independently of S/V )
14 z

MODEL 27

“Peaks” and network functions- Lorentzian plus Debye-Beuche; Lorentzian for quasi-€lastic neutrons,
Gaussian function, Voigt ( Gaussian convoluted with a Lorentzian), Gaussian to exponential, Ikeda-
Carpenter moderator function, and Gaussian convoluted with an exponential.

LTYP =1 Gel networks etc., as proposed for aqueous gelatin by |.Pezron et.al. Polymer 32(1991)3201-3210.
Lorentzian plus Debye-Beuche. (See MODEL 7 for asimilar structure factor and MODEL 17 for the Debye

term.)
Q)= 1(Q) + IU1+Q%d) + 12/(1+Q%?)2
LTYP=1 11 1(Q=0) Lorentzian term
2 X screening length for a semi -dilute solution ¢ > ¢ ,ina good solvent is the average mesh
size of atransient network.
3 12 1(Q=0) Debye-Beuche term (compare notes on MODEL 17).
4 a decay length for inhomogeneities of correlation function r) = exp(-r/a)

LTYP =11 hasalorentzian for quasi-€lastic neutron scattering, for which see also MODELS 4, 11 & 15
and compare the methodsin D.S.Sivia, C.J.Carlile, W.S.Howells & S.Ko6nig, PhysicaB 182(1992)341-348.

LTYP=11 A Lorentzian for inelastic neutrons:  1(Q) = 1(Q) +A.W/ 2p ((E - 0)2 +(W/2)2)}
12 w FWHM of peak



13 d shiftinQ or E scale

LTYP=21 SCALE Gaussian pesk  1(Q) = 1(Q) + SCALE*exp{-0.5*((Q-Qv)/s) )*}
22 w FWHM of peak. Standard deviations = max( W/sgrt( 2In(2) ), 1.0e-12)
23 Qo peak position

LTYP=71, “ Stretched Gaussian peak, asfor LTY P =21, except extraterms added, as used for empirical
fitting of LOQ resolution function.

LTYP=71 SCALE 1(Q) = I(Q) + SCALE*exp{-0.5*[(Q-Qu)/(s + (abs(s2)+ 53 )(Q-Qy) ) I°}
72 w approximate FWHM of peak, s =max(W/sgrt(2In(2)), 1.0e-12)
73 Qo peak position
74 S, symmetric stretch of tail
75 S3 asymmetric stretch of tail
LTYP=31 SCALE Voigt function, Gaussian convoluted with aLorentzian
32 S Computed from real part of complex error function,
3 g see source code from W.I.F.David.
3 Qo peak position
LTYP=51 SCALE Gaussian going over to exponential, with continuous first derivative
52 w AsLTYP=21when (Q- Q) <s%t
53 Q when (Q- Q) >s%t then:
53 t 1(Q) = I(Q) + SCALE.exp{ s¥2t%exp{-( Q- Qu)/t }
LTYP=61 SCALE I keda-Carpenter equation for moderator time distributions.
62 S/l =25277842a, where Sisincm* and wavelength| in Angstrom
63 to timeorigin offset, times assumed innsec,
64 b
65 R, fractioninstorageterm, 0£RE 1

Ikeda & Carpenter ( Nucl.Instrs. & Meths. A239(1985)536-544) first note that for high energy neutrons, from an
hydrogenous moderator the time distribution should approximate to the chi-squared distribution expected for neutronsin
an infinite medium of free protons at rest, with no adsorption :

f(v,t) = STV(Svt)Z exp(- Svt) (t> 0)

where v is the neutron speed and S is the neutron scattering cross section. At short times this predicts a universal
shape for the neutron pulse if timeis scaled by v. Atlong timestheir experimental observations suggested a decay time
independent of neutron wavelength, as might be expected for the moderation process. A fraction R of the neutrons are
convoluted with an exponential of decay time 1/b to give a neutron pulse shape that is the sum of “slowing down” and
“storage” terms:

— 1. a 24 - at ab =¥ V24 -at'a - b(t-t) g4
Yt)=(1 R)Z(at) e +R—2 0. (at')e ?'e dt

— a 2, -at azb - bt - at 1 242
Yt)=(1- R)?(at) e +aR—(a b)? [e™-e *@A+(a-b)t+5@ - b))

¥
where QY (t)dt =1 anda=vsS.



LTYP=81 SCALE Gaussian convoluted by an exponential
82 S
83 Qo
84 b

A Gaussian exp{ - 0.5*(( Q-Qu)/s )*}/((2p)*®s ) is convoluted with an exponential bexp{-bQ }, where both functions are
normalised to unity, to give:

- b 1 2 el (Q- Q)00

1(Q) = 1(Q) +exp(+(bs)? - b(Q - Qp)erfeg—r=Ebs - =—=37

where  grfe(x) = “dx

2 o
N
See J.M.Carpenter, R.A.Robinson, A.D.Taylor & D.J.Picton, Nucl.Instr. & Methods A234(1985)542-551 for use of a pair
of these terms to model the fast & slow components of pulsed source diffractions peaks ( compare the Ikeda-Carpenter
eguations above), where Q isthen actually of coursetime.

MODEL 28

Form factors for scattering from athin interface, which may be used either alone, or in conjunction with
Model 29 for a one dimensional para-crystalline stack. ( The separation of form factor P(Q) and structure
factor S(Q) allows details of interfacial structureto beincluded. An*“all-in-one” approach isincluded as
MODEL 29, LTYP=11 which allows athird, background, phase of different scattering density, but assumes
sharp interfacesto thelayers. ). Some of the models here are mathematically closely related to those used
for polymers at large radius interfaces (RKH still to investigate the links here!)

LTYP(1)=1, 21 and 31 have a Lorentz factor to approximately allow for a small Gaussian distribution of surface normals
around the Q vector. Following Appendix A of N.T.Skipper, A.K.Soper & J.D.C.McConnell, J.Chem.Phys. 94(1991)5751-
5760 we multiply by

1
L =
v (Q = TR )
When Rs isvery large this corresponds to the Q? Lorentz factor used by Kotlarchyk et.al. following M.Shibayama &
T.Hashimoto, Macromols. 19(1986)740-749 as an approximation for randomly oriented stacks. When Rs = 0 the Q vector
isaways normal to the surface, i.e. theinterfaceis perfectly flat. In practisethe Rs term is aways significant and the
theoretical Q2 behaviour of the form factor for aflat sheet israrely seen.

LTYP(1)=1orl1 (whichisnow redundant, just set Rs = 0) has arectangular profile of mean thickness L, with a Schultz
polydispersity characterised by widths(L)/L. Thisisconvoluted with a Gaussian

exp(-22/252) toalow for interfacial diffusenesst = (2p)1/25. See M .Kotlarchyk & S.M.Ritzau, JAppl.Cryst.
24(1991)753-758 [ assumed factor of 4 missing in egn 17].

NOTE that the scaling constant is as for LTY P=21 below, but is multiplied by L> where L isthe layer
thicknessin A.

NOTE that even modest values of t cause the form factor ( on alog plot) to fall off rapidly at high Q.

LTYP() =1 11 21 31

nl scale’ =scdel? asfor LTYP=1 scale scale

2 t interface " (4 corethickness (4 corethickness
diffusness

3 L layer thickness " (rorglrray (rorglrqrg

4 s(L)L layer " (o shell or head (Vk) exponential
polydispersity group thickness decay length for

head group.
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5 Rs Lorentz factor (Ignored) Rs Rs

LTYP(1)=21 is amonodisperse symmetrical shell/core/shell layer, where we assume here the core has scattering length
density r , and thickness 74, the shell r , and thickness/, , and the solventr ;. Thetotal layer thicknessis
fl + 2€2
Wetakethe 1(Q) = I(Q) + scale.Ly(Q).fA(Q) where (M.Kotlarchyk, E.Y.Sheu & M.Capel,
Phys.Rev.A46(1992)928-939. checked by RKH ) we find:

sin(Q¢, /2) ey (r,-ry)
Qr,12 Z(ry-ry)

sin(Q/, /2))

f(Q)=1¢, YNE

cos(Q(¢, +1,)12)

For arandomly oriented sheet, asfor avesicle of large radius, we compare the scattering from athin spherical shell of
scattering length density r ; and thickness ¢;, of large radius Ryhere in @ solventr 5,

_ 2
1(Q)® Sp(rlQ—AH)SSmZ(le /2)
to derive: scale= 10%p(r 1 - r 9°S(Rs)’. where the scattering length densities arein cm®, /1 inf(Q) and (Rs) arein A, and
Sisthe area of sheet per unit volume of sampleincm™. [ S=N.4p(Rgnee)’ ] NOTE an extrafactor of L is needed in the
scalefor LTYP=1 or 11 (as per table above).

When combined with model 29 below, Sisthetotal area of sheet, so for amultilamellar vesicle, the scale factor increases
in proportion to the number of layers for a constant number of particles N, or remains roughly constant for afixed
amount of material in thelayers. !
(Note-inthelimit of large /1 the si n’term averages to 1/2 and we reach the normal “Porod” limit of

(Q® 2pSt(r1-r3°/Q" where S¢=2S sincewe count both surfaces of the sheet ! )

For “large” randomly oriented multi-layer stacks ( e.g. starch granules ?) this should still be the correct form of the scale
factor ( CHECK).

For an oriented sheet, where the scattering isin one direction in Q, one compares the scattering from an oriented disk of
large radius R«

s, SIN(QY, [2)0°
1(Q)® N(rl_rB)Vg Qr, /2 P

to obtain: scale= 107°(r 1 -r 9 /N where the scattering length densities arein cm*, N is the “number of particles

per unit volume” in cm, Sisthe surface area of sheet per unit volume of sampleincm™ [ S=N.p(Rss)® ] Notethat for
atruly infinite sheet, S=N.(1cm)?=f/(10° ¢1 (A)). Thisscale factor works seemsto work reasonably well in practise,

despite the fact that (Rs) in Ly(Q) may become quite large, when for aninfinite, flat sheet it should be zero.

The“scale” factors given here have been tested numerically by fitting hollow sphere, multi-layer vesicle and oriented
disk data generated by other FISH models.

Note that the way the “shell” has been programmed here, to simplify the scale parameter, causes difficultieswhenr ; =r 3
and we must use the equivalent equation ( RKH has not coded this- yet ):

Sin(Q(¢,+2¢,)12)
Q(L,+20,)12

sin(Q¢,/2)
Qr,12

FQI(ry - ry)=(ry-r ), +20,) t(rg - r)l

LTY P(1)=31 monodisperse shell/core/shell, arectangular core with exponentially decaying shell, characterised by decay
length (I/k) for which RKH has derived (typo in last term corrected 21/10/03):

sjn(Q€1/2)+ 2 (r,-r

M= =gz "trar (o

2) (k cos{ Q¢,712)- Qsin(Q7,/2))
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If x=0isat the centre of the core, then the scattering length density isr , to x =¢4/2, and r ,exp{-k(x - £1/2)} for larger x.
Thusit issensible, but not actually necessary, to haver ,=r ;.

MODEL 29

Onedimensional paracrystalline stack models. Paracrystal models assume a particular type of disorder of
lattice planes, in that successive plane spacings are chosen at random from adistribution function (
usually Gaussian). Though nearest neighbour relationships may be physically reasonable, longer range
correlations may not actually be representative of real structures. The mathematics tends to produce
oscillations at small Q, which may be smeared out to some extent by using an instrument resolution
function.

LTYP=1 Structure factor S(Q) for aone dimensional paracrystal ( normally to be used with MODEL 28). See
M .Kotlarchyk & S.M.Ritzau, J.Appl.Cryst. 24(1991)753-758. NOTE that the 1/Q° Lorentz factor isincluded in MODEL 28.
1(Q) =1(Q) * S(Q) where S (Q) isin equations (9)-(12) of the paper referenced.

LTYP=1 M number of layersin the stack.
2D mean distance apart - plane spacing.
3s(D)/D Gaussian distribution in plane positions ( Hosemann g-factor ).
4spare  ( not used, but need toinclude)

LTYP =11 or 21 Three phase model of W.Wenig & R.Bramer, Colloid & Polymer Science, 256(1978)125-132 using the
method and notation of I.H.Hall, E.A.Mahmoud, P.D.Carr & Y .D.Geng, Colloid & Polymer Science, 265(1987)383-393. (
with some corrections for typographic errors re-checked by RKH, see commentsin subroutine PARA3, and thanks to
P.Jenkins & T.Waigh for copies of these papers and their routine DALLFIT ). The model has separate probability
distributions for the layers and for the gapsin the paracrystalline stack. Scattered intensity isthen derived in terms of
the one dimensional Fourier transforms of the two distributions. Layers and gaps are assumed infinite, parallel, flat
sheets with sharp interfaces. The stack may be immersed in a background medium of separate scattering density. When
r s=r; numerical results are amost identical for comparable cases to those of MODEL 28 coupled to MODEL 29,
LTYP=1. TheLTYP=21 version multiplies by aL orentz term with Rs as per MODEL 28.

LTYP=110r21 SCALE asper MODEL 28, ignoring the Dr 2 which isincluded below. NOTE thisindirectly

includes the effective volume fraction of the “stack” relative to the third “background” phase

2M number of layersin the stack. ( Thisisconverted to INTEGER if either “top hat” distribution

is used below, as the equation then involves (negative number)" . M will probably then need to be
adjusted by trial and error. )

3r, scattering density of layers in stack
4Y mean thickness of layers
EITHER5 s(Y) standard deviation of Gaussian distribution for Y
OR 15 dy) width of “top hat”, rectangular distribution for Y
6r scattering density of “gaps” in stack
7D=X+Y mean d-spacing, where X = mean thickness of gaps.
EITHERS8 s(X) standard deviation of Gaussian distribution for X OR
OR 18 dx) width of “top hat”, rectangular distribution for X
9 rs scattering density of background medium. Setr ;=r ; if the background is not different.

NOTE the equations, are not symmetrical, so do not set it tor , !!
( 10 Rs) include ONLY if LTYP =21, multiplies|(Q) by Lorentz term, asfor MODEL 28,

pushes scattering up from Q2 to Q* at small Q.



MODEL 88

Allows simultaneous fitting of more than one data set. e.g. with different scale factors but the same model.
LTYP=n means that following records apply only to the n'th data set in the fit, until the next 88 record (n =
1, 2, or 3; not the workspace number). Use880, i.e. LTYP=0 to returnto normal “al sets’ usage. Thiswill
allow say adifferent scale factor and background for a simultaneous fit to two or three data sets, whilst
sharing other model parameters. In many cases additional constraintswill be needed.

MODEL 99

Thefinal scaleto stop the calculation, ALWAY Srequired. The accumulated intensity ismultiplied by a
final overall scalefactor (useful to correct the units) and stored away. NOTE be careful not to have more
than one scaling parameter refining at atime!

LTYP=1 SCALE

Calc(Q) = SCALE* [ (Q) + WRK(Q) ] where WRK(Q) contains the background
-seeMODELS3& 4.

CONSTRAINTSBETWEEN PARAMETERS

Parametersin afit or calculation may be tied together in various ways. The pair of control records needed for each
constraint may be read from an L SQFILE or else the same information supplied interactively in the FIT routine by the Cn=
command. Simple linear or multiplicative constraints are fully programmed already, other constraint types would need to
be added by the user into the FORTRAN routines CONTIE, CONOP and CONDER. Such a case might befor complex
geometric constraints within amolecular structure. The normally available cases allow one for example to refine a multi-
shell small angle scattering profile where certain shell widths are fixed relative to each other, see the example included at
MODEL 10.

NOTE- for a constraint to become operative the partial shift PS(J) for V(J) must be set to-1.0 To turn on a constraint that
has been turned off ( by n=OFF) use n=TIE. To fix the value of a“tied” parameter, it may only be necessary to fix the
parameter(s) to which it istied.

BEWARE - some of the later constraints NCON >14, may not be coded on all platforms- no error messages are given, so
CHECK that the constraints are operating !

Therecords needed in the LSQFILE are:
(vi) (a (2014) NCON decidesthe type of constraint relationship
J K, L, M .... integers decide which parameters are involved.

(b) (8F10.0)0 A,B,C,D .... numerica constants
(thisrecord is always expected, even if no constants are required by the constraint)

Thetypes of constraint available are:

NCON=1 V() =A*V(K) + B*V(L) + C

NCON=2 V(I = V(K)*V(L)

NCON=3 V(I = 20°V(K)*V(L) used for, MODEL 6, (R2-R1)=2*| *Rmid
( Seeexamplefilein Appendix B )

NCON=4 V(9 = (L0-V(K))*V(L) usedfor R1=(1- )*Rmid, | =(R2-R1)/(R1+R2)

NCON=5 V() = A*V(K)*V(L)**B + C*V(M) + D

NCON=6 V(@) =[ A +B*V(K)*V(L)**C]**D

NCON=7 V() =[ (A +B*V(K)*V(L) + C*V(M) ]**D

NCON=8 V(J) = V(K)*(A*V(L) +B) + C*V(M) + D

NCON=9 V(J) = A*(B*V(K) + C)**D

NCON=10 V() ={ [ A*(V(K) + B*V(L) )**C]*V(M) }**D

NCON=11 V(J) = A*V(K) + B*V(L) + C*V(M) + D*V(N) + E



NCON=12

NCON=13

NCON=14

NCON=15

NCON=16

NCON=17

NCON=18

NCON=19
NCON=20

NCON=21

NCON=22

40

(Earlier versions of FISH had one less term here, but old models are converted automatically on input)
V(@ =(10-V(K) ) (V(L)-VIM))

V@ =V(K)-VL) +VIM [V(N) - VK) ] + V(O [ V(L) - V(P ]

used for scattering length density difference where given relative concentrations of core and/or solvent
penetrate a shell, (needs adummy model 2 parameter for "zero" for only core or solvent case).

Constraint for sheared rods, see model 18. Parameter numbers J, K, L, M are respectively for G, rod

radius R, shear gradient G (in sec’’) and h/T = viscosity/temperature ( for which Penfold et.al. use 3x10°
for D,O). G andh/T should be given as model 2 parameters, so for example an “effective viscosity* h/T
may be refined within some physically reasonable limits. Rod length L and shell thickness DR are assumed
to be V(K+1) and V(K+2). The constraint setsG= G/D;, where rotational diffusion constant D, is
approximated by D, = 3kg(s-t)/(8p(h/T)L®) in which s = loge(L/R) and t = 1.57 - 7.0*(0.28 - 1/s ). The
approximation isonly good for large values of L/R, when s> 2. For numerical stability FISH keepss3 2 at
all times.

Constrain parameter J = shell thicknessd, for core/shell ellipse MODEL 24, by solving acubic

equation for d ParametersK & L arey = (Volume of “dry” shell/ volume of core) & f = fraction of solventin
shell. (Note this also uses parameters (J-1) and (J-2) for axia ratio X and inner radius.) Usually you will
also need constraint 16.

Constrain parameter J = contrast term, for core/shell ellipse, MODEL 24

ParametersK, L, M, N, O arerespectively y = (Volume of “dry” shell/ volume of core); f = fraction of
solvent in shell; scattering length densities of core; dry shell; and solvent. (also uses (J-2) and (J-3) for
axial ratio X and inner radius.). Valuesof Ve, Vioa @ndr , are stored in CON(9), CON(10) and CON(11).
See also NCON=21. BEWARE do not let shell disappear, as*“contrast” becomes infinite giving divide by
zero !

Constrain parameter J= new scale factor for further data sets of core/shell ellipse or core/shell rod,
MODELS 24 or 18. ParametersK, L, M, N,O,P are respectively: first scale factor; f = fraction of solventin
shell; scattering length densities of first shell, first solvent, new shell, new solvent.

Constrain parameter J= contrast for core/shell rod, MODEL 18, with solvent in shell.

ParametersK, L, M, N, arerespectively: f = fraction of solvent in shell; scattering length densities of core;
dry shell; and solvent. Inthiscasedivide by zeroes are tested and trapped.

V(J) =A*V(K) + B*V(L) + C*V(M) + D*V(N) + EX*V(M) + F*V(O) + G*V(P)

"Hedgehog " constraint for contrast stepsin a stretched out "polymer" shell (R.K.Heenan 22/7/98).

If the shell is composed of cylindrical spines normal to the core surface then the scattering length density
asafunction of particleradius R falls off from the core/shell boundary as 1/R2. More generally if we
propose a 1/R" fall off then h may vary continuously from h =-2, the Hedgehog case, to a uniform shell
h=0. (Noteh >0ismeaningless!) If the profileis approximated by aseries of n linear sections (using
MODEL 10, LTY P=11) then the contrast steps go as: (ri-r)=(r1-r JR"-RNR"

In the constraint J,K,L,M,N & O arerespectively for (r ;- r;), R, R, R, Dr =(r 1-r ), and h. To finish the
series Rj for the last vertical step (which may be large) R; must point to azero (usually an extra MODEL 2
line) and then we set 1/zero to zero. Note that these constraints must come after the ones defining the set
of radii R; to be used. It is up to the user to keep the value of hinavalid range! (Bugsin derivatives fixed
Nov 2005.)

Same as NCON=16, contrast for core/shell ellipse,

but ignores V (K), allowing afree choice of shell thickness.

V(I =A*V(K)/(B+C*V(L)) [used in double constraint for co-surfactant in shell]
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NCON=23 Part of multiple constraints for oil & drug partitioning between core & shell of microemulsion,

needs 8 parameters & 4 constants (consult RKH).

NCON=24 For core/shell/shell with polydisperse outer radius R3 & multiplicative constraintsfor R1 & R2. Finds

RUR3=V(J) and R2/R3 =V(K) for uniform, fuzzy & exponentia shells (model 10 1 or 10 11 or 10 21 or 10 31)
given V(dry shell)/V core, X1 solvent fraction at R1, X2 solvent fraction at R2 and Y 1= fraction of shell (e.g.
polymer) in first shell (paramsL,M,N,O respectively) given V(P) isR1, V(P+2) isR2 and V(P+4) is R3. (uses
iterative method after solving exactly for two uniform shells- consult RKH if in doubt or fails to work,
added 8/2/2002, small bug fixed 29/10/02 ).

NCON=25 V@ ={V(K)-V}*V(M) +{V(N) - VO}*V(P) +{V(Q - VR}*V(S

METHOD- the least squares procedure requires the derivative of each calculated data point with respect to each refining
parameter. If aparticular parameter is constrained to others, then the derivatives for those others need to be modified by
routine CONDER which does:

TQ/MVE) = MQ/ V) + [TVITVOTMEQY/IVI]  for i=K,L,M ...

See Appendix E for further details. Noteif you are careful, constraints may be nested, the derivative modifications are
donein reverse order to allow for this.

MAKING CHANGESTO THE PROGRAM

Addition of new models requires changing routines DERIV and CALCQ in FISHMODEL.FOR and routine DELSET in
FISH4. To understand how they work first study routine CALCQ which calculates 1(Q) for agiven Q. Routine DERIV is
more complex in that it calculates both 1(Q) and its derivatives with respect to refining parameters di(Q)/dV (J). Wherever
possible analytic expressions for derivatives are used, if thisis not suitable then routine DEL SET chooses the size of
shiftsfor numerical calculation of the derivatives. Options 31 and 32 in the FIT menu provide a useful route to help
debug anew model or to test the calculation of derivatives. For complex modelsit is advisable to write a separate
program to generate some test data. Graphics control is again long-winded but calls to local graphics routines are made
ONLY by the routines LOCDEV, LOCAXIS, LOCGRAPH and LOCLIN. These may easily be rewritten to suit a particular
computer system.

Fortran CHARACTER variables are so far only used in afew places for filenames.
The program is split into a number of files at present, on some computers alibrary structure might be more appropriate.

FISH1.FOR contains the main control routine, input of DATAFILE and simple processing of sets- QBIN, CENTRE,
ARITH etc. Hasthe SET routine which opens/closes data filesand BLOCK DATA section.

FISH2 contains graphics routines that call ONLY theroutinesin FISHGRAPH.

FISHGRAPH haslocally specific graphics routines. At RAL these now use UNIRAS, including aroutine to write an
abbreviated parameter table alongside a plot which may then be sent to alaser printer file.

FISH3 has a second plot routine, for the least squares, plus some odds and ends.

FISH4 file has the entire least squares fitting procedure with its FIT menu and interactive control routine TALK, also the
constraints routines and derivative set up routine DELSET.

FISHMODEL hasthe calculation routines DERIV and CAL CQ containing the models.
FISHSMEAR tackles smearing to allow for instrument resolution, MODEL 15.

FISH5 contains only routines concerned with polydisperse small angle scattering including quadrature routines for
numerical integration.

FISH6 has routines peculiar to UEA & FRI Norwich for Vonk desmearing and some colloid calculations, it is not required
by other people.

FISH7 has the Hayter-Penfold and other charged particle structure factor routines.

NOTE not all occurrences of a particular common block areidentical, alist of parametersin one routine will frequently
become an array in another routine, nor are they all the same lengths.

Three "text" files are also required their location being determined in FISHPREF.TXT. Thesefiles both definethe
commands used and contain the on-line HEL P comments.
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FISH_COMMANDS MAIN.TXT text file to define command language for main program
FISH_COMMANDS PLOT.TXT " " " " " " " FISH2 plotting

FISH HELP_FIT.TXT helpfilefor FIT routine commandsin FISH4, the actual commands are defined by BLOCK
DATA section. in FISH1, and are difficult to add to or alter !

Since FISH2 of Oct 1999 all dependence on external mathematical libraries such as NAG, for either mathematical functions
or numerical integration has been removed. For detailed acknowledgements of the routines adopted or adapted for FISH
see the Fortran source code.

PLANNED CHANGES KNOWN BUGS

If RANGE is used to reduce the number of points being fitted the plot routines sometimes do not compensate properly
and plot data previously stored in the excluded part of the array - please report any instance of this!

July 96 - Note that FISH' s calculation of b(Q) to correct S(Q) israther limited in its applicability, see notes on page 10.

Summer 97 - In some cases SMEARING does not work when refining - the shifts seem wrong, could be numerical
integration problems at high Q ???? Needstest for other models.

LOQ & FISH DATAFILE DEFINITION

Each data set in FISH has arrays Q, C and E for ordinate, abscissaand error respectively. The READ3 and READ2
commands will read more general data, one set per file. The LOQ & FISH file dataformat described below allows many
sets of data per file. The READ command in the main control section will read them sequentially, asking whether to skip
or not until the correct oneisfound. The file may also be rewound. The file description was written with cardsin mind
(areyou old enough to know about these?) so istightly formatted. However the main data format isactually read in, as
aFortran format as so almost any sensible ASCI | character file from some other source can be read by the addtion of five
header records, skipping original header/footer lines as necessary.

Record Format ~ Contents
(a) (20A4) Title(include adate!)
(b) (20A4) second title
(c) (615) NCH  number of channels (data) (max 512)
NC1 Number of first good data point
NC2 last good point before beam stop
NMC centre TIMES TEN ( so accurate to 0.1 channel)
NC3  first good point after beam stop
NC4 last good point after beam stop

NOTE - for normal, ascending Q only use NC1=NC2=NMC=0
NOTE - NCH does not have to equal NC4, "poor" data from the ends of the range may be carried around
indefinitely, left in or out as desired by altering the NC's
(d) (4110) NSUM if <=0 total sum over NC1-NC2 plus NC3-NC4 stored here
which if thisis> 10**8, then isdivided by 10**6.

(IC(1),1I=1,3) monitor counts
('Y ou can use these four numbers for anything you like, they were originally used for Daresbury
X-ray datamonitor counters.)

(©)(12,1X,19A4) IFLAG =1 only C(i=1,NCH ) dataarray to beread
=2 only (Q(i),C(i), i=1,NCH ) coordinate and data arrays to be read
=3 (Q(i),C(i),E(i), i=1,NCH ) coordinate, data and error arraysto be read
(FMT(1),1=1,19) character string containing data format
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Thisrecord might be: 3 (2(F12.7,2E17.5) )
(f) (FMT)- using fortran format asread at (€) Actual data.



LSQFILE (MODEL FILE) FORMAT

Thisfile may contain anumber of model descriptions and isread sequentially in the sameway asthe DATAFILE. If the
model was generated using the FF command in the interactive FIT routine then it will contain exact parameter values to
enable the calculation to be repeated at alater date. Estimated standard deviations are also included for reference,
though these are not of course required asinput. These and other non-necessary parametersareincluded in brackets
below. Other control records decide the sort of fitting procedure to be followed and whether any of the parameters are
fixed or constrained in some way.

Records for each model description, with their FORTRAN input formats and variable names are as follows:
(i) (5(2X,13)) NT number of title records (max 4)

NP number of parameter records (max 64, 40 refining)

(NS) number of data sets- see (v) (max 3)

NC number of constrained parameters- see (vi) (max 6)

NN number of numerical constants- see (vii) (max 24)

(i) (17(3X,12))  IW weight function O - unit weights, 1- 1/(error®), 2- 1/data (K1=0or 1 or 2 ininteractive FIT)
IK type of fit 0- normal least squares
1- Marquardt method (K2=0or K2=1ininteractive FIT)
IP 1- include predicate observations, 0- none
MS miss data, use every MS'th point in earlier cycles of slow calculations (use K4=n in FIT).
(1Y) used internally 1- polydisperse refining
Thefollowing four integers were removed from the program in April 1993, when amore general set up for
numerical integration schemeswas introduced. So now use K6 =1 or K7=1tore-initialise all integration
schemes. Nov. 2000 version introduced K8=1 to exclude b(Q) correction to S(Q). For compatibility with
older data setsthisisignored on input (FISH gives areminder) so will haveto beset againin FIT.
(ignored - was METH was model 6 Q)
(ignored - was METH2 was moddl 6, R)
(XB set 1 to exclude b(Q) correction to (Q))
(ignored - was METHELL)
(LS(2)...LS(4)) spare- used by POLCAL etc.
(NPRED) number of predicate observations
(NDAT) number of normal observations
(NYC) cycle or iteration number
(NPR) number of refining parameters
(iii) (80AD) ((LCOM(1,9)),1=1,80),F=1,NT), NT title records
(iv) (313,3A4,E14.6,E13.3,F6.1,E10.2) Model description records for each of NP
parameters, see next section for how to use them:
(1 running number 1...NP on output
LM(i) model number
LTYP(i) parameter number
LPAR(J,i),J=1,3 label for parameter
V(i) value of parameter

(ESD(i)) standard deviation on output



PS(i) "partia shift" thisis
0.0if parameter isfixed

>0.0if parameter isrefining, calculated shifts are multiplied by this value
- helps convergencein poorly conditioned cases.

-1.0if parameter is constrained or tied.
-2.0 for the polydisperse radius in a complex contrast, see MODEL 10.
(v) NSrecords are skipped on input, have details of data sets on output
(vi) NC constraint records - see section above on CONSTRAINTS.
(vii) (8E10.3) (CON(I),I=1,NN) NN numerica constants:
CON(2) for MARQUARDT fit lambda, | parameter .
CON(2) & CON(3) used by MODEL 5 for Vg and s/rbar.

CON(4) & CON(5) used by MODEL 6 for Dr in Simpson rule integration and as an upper limit for
particleradius, g« NOTE remember to set these if using MODEL 6 polydispersity !

CON(6) & CON(7) used by models’5 & 6 for calculated entropy and estimator B - see MODEL 5.



APPENDIX A - AN EXAMPLE DATAFILE

Thefile below was written out by COLETTE ready for input to FISH, it has been reduced to 6 data points,
the third record has been edited by the user so that only points2-4 areto beused in FISH. The 3inthefith
record showsthat Q, 1(Q) & error(Q) are expected, using the format shown.

LOQ Wed 18-MAY-1988 15:21 SAMPLE: 714 EMPTY CAN: 749

lanbda 2.20 10.00 Phi -90. > 90. deg Radii 35.0 335.
0 6 0 0 0 2 4
0 0 0 0
3 (F12.5, 2E16. 6)
0. 00562 1. 664269E+01 1. 182694E- 01
0. 00607 1. 018861E+01 6. 170455E- 01
0. 00655 4.091472E+00 3. 789476E- 01
0. 00707 4.746222E+00 4. 646616E- 01
0. 00865 6. 092464E+00 2.959473E- 01
0.00947 8. 743887E+00 2.343611E- 01

APPENDIX B - AN EXAMPLE MODEL FILE - L SINP.DAT

This example file contains three separate models: (i) asingle spherical particle plus background, note that
only the constant term in the cubic backg round is being used to give aflat background addition.

(ii) polydisperse spheres with R-15 5ize distribution defined by Rmid= 60 and width lambda=0.5. The
lambda and R-MID parameters 5 & 6 do not do anything directly so are MODEL 2; they are related to R1 and
R2 viathe two constraints. Again aflat background isincluded.

(iii) similar polydisperse spheresinteracting via a hard spheres structure factor. The hard sphere radius and
volume fraction have partial shiftsof 0.4 in order to damp their changes. Instrument resolution smearing is
aso added. Thelabel field isentirely optional, the calculation is controlled by the MODEL and LTY P
numbersin the second and thid columns.

Asareminder the main columns are (note the running count number isignored on input):
Runni ng Model LTYP(i) Label Parameter ESD Partial Calc

count number Val ue V() shift shift
i On/ O f
13 I3 13 Al2 E14.6 E13.3 F6.1 E10. 2
T 1P 6S 0C ON O
W 1K 0IP1MS11Y1Q 7R 7 6 1
SI NGLE SPHERE PLUS BKG
11 1Ca 1. 842795E- 04 5. 014E- 06 1.0 4.96E-08
2 1 2Rl 1. 000000E 02 0. 000E+00 1.0 0.00E+00
3 3 1BKGA 9. 848869E- 02 1. 601E- 02 1.0 2.20E-05
4 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0.00E+00
5 3 3 CQr*2 0. 000000E+00 0. 000E+00 0.0 0.00E+00
6 99 1 SCALE 1. 000000E+00 0. 000E+00 0.0 0. 00E+00
T 1P10S 1C 2N 5
Wi1K 0IP1MS1IY1Q 7R 7 6 1
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POLY DI SP SPHERES PLUS BKG CONSTRAI NED TO FIT RM AND LAM

1 6 81 RR*N VOL 1. 842795E- 04 5. 014E- 06 1.0 4.96E-08
2 6 2 R-RL 7.326303E+01 0. 000E+00 -1.0 0. 00E+00
3 6 3Rl 2.997124E+01 0. O0OOE+00 -1.0 0. 00E+00
4 6 4N -1. 500000E+00 0. 000E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 000000E- 01 0. 000E+00 0.0 0.00E+00
6 2 2 R-M D 6. 000000E+01 4. 136E-01 1.0 2.46E-03
7 3 1 BKGA 9. 848869E- 02 1. 601E- 02 1.0 2.20E-05
8 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0.00E+00
9 3 3 cQ*2 0. 000000E+00 0. 0O00E+00 0.0 0.00E+00
10 99 1 SCALE 1. 0O00000E+00 0. 000E+00 0.0 0. 00E+00

1 1 2114.SUB CALC 2 BKG 3 POL 4 SSE= 3. 898E+01

3 2 5 6 0

0. 00000 0. 00000 0. 00000 0. 00000

4 3 5 6 0

0. 00000 0. 00000 0. 00000 0. 00000

1. OOOE- 01 1. 843E-04 3.112E 01 2. O00OE+00 1. 032E+02

T 1P14S 1C 2N 5

Wi1l1K 0OIP1I1MS1I1Y1Q 7R 7 6 1

(POLY DI SP SPHERES) * HSS( Q) CONSTRAI NED TO FIT RM AND LAM

1 6 81 R**N VOL 1. 842795E- 04 5. 014E- 06 1.0 4.96E-08
2 6 2 R-RL 7.326303E+01 0. 000E+00 -1.0 0. 00E+00
3 6 3Rl 2.997124E+01 0. OOOE+00 -1.0 0. 00E+00
4 6 4N -1. 500000E+00 0. 000E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 500000E- 01 0. 000E+00 0.0 0. 00E+00
6 2 2 R-M D 6. 660275E+01 4. 136E-01 1.0 2.46E-03
7 22 1 HS S(Q VOL 1.854555E-01 1. 444E- 02 0.4 -4.55E-05
8 22 2 SPH RADI US 1. 351837E+02 2. 197E+00 0.4 2.26E-01
9 3 1 BKGA 9. 848869E- 02 1. 601E- 02 1.0 2.20E-05
10 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0.00E+00
11 3 3 cQ*2 0. O0O0000E+00 0. 0O00E+00 0.0 0.00E+00
12 15 1 SMEAR 1. 000000E+00 0. 000E+00 0.0 0.00E+00
13 15 2 NSI WP 2. 100000E+01 0. 000E+00 0.0 0.00E+00
14 99 1 SCALE 1. 000000E+00 0. O00OE+00 0.0 0.00E+00

1 2114.SUB CALC 2 BKG 3 POL 4 SSE= 3. 898E+01

1

3 2 5 6 0

0. 00000 0. 00000 0. 00000 0. 00000

4 3 5 6 0

0. 00000 0. 00000 0. 00000 0. 00000

OOOE- 01 1.843E-04 3.112E 01 2. 000E+00 1. 032E+02

APPENDIX C - SPECIAL MODELSFOR 2-SHELL ELLIPSOID

MODEL 24 with LTYP(1)=21 or 31 arefor swollen micellar systems with either constant ratios of inner and
outer radii or constant outer shell thickness respectively. The standard model is entirely reparametrised
using most of the numerical constant CON() array to store physical parameters. [ Note this precludes the
use of polydisperse spheres or other models using the CON() array, though the CON() here could easily be
moved if required.]

The model assumes a surfactant micelle in water where the surfactant has a hydrocarbon tail. The head
group/water interface may be "staggered", thereby including some of the surfactant tailsin the "head
group" region. Thisiscontrolled by ALF. Oneterminal CH3 group is aways assumed to be in the core (
compare CON(2& 3) with CON(15& 16). Oil may be added to the core region via CON(22-24).



LTYP=21or31
2

3
calcul ated

4 Charge

5 ALF

SCALE=(r -1 3)3/12N

and SCALE has units of cm™L. Thefitted value of this parameter should agree with the
expected value in CON(17), if all the conversions to absolute units are correct !

This model makes extensive use of the numerical constants array, so it may be incompatible

SCALE

AGG  aggregation number, number of surfactant molecules per micelle
X axid ratio (if LTYP(1)=21) isnot used if LTYP(1)=31 when shell thicknessdis

in CON(19) [Check this, I'm not sure ']

fraction of CH2 chain groupsincore(a)

with some other models.

CON(1)=N1 Marquardt lambda, as usual
2 CHgvolume, A 3
3 Shi CHg, inunitsof 10-2om
4 head group volume, A3
5 Sbi headgroup, scattering length in units of 10-12cm
6 hydration number headgroup
7 counterion volume, A3
8 Shi counterion, in units of 10-12cm
9 counterion hydration number
10 solvent volume, A3
11 Shi solvent, in unitsof 10 2cm
12 scattering length density of solvent, r 5 A-2
13 [conc-cmc] surfactant, mol/litre
14 NA, Avogadro's number.10-19= 6.0235x104
15 (CH2)y.1 volume, A3
16 Shi " in units of 1012cm
17 expected scalein cm-1 17-21 are calculated by the program
18 R1, A
19 R2 or d
20 rq, A2

where number density of mcelles N = [conc-cmc]Na /(agg. no.)
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21 ro
22 [cil], concentration of solubilised oil, mol/litre,
note  Ng per micelle = aggregation number.[oil]/[conc-cmc]
23 oil volume, A3
24 Shi oil, cm

These parameters are used by routine AGGRE to cal culate the normal parameters to pass to the routines for
two-shell ellipsoids ELL SH1 and ELLSH2.

Guidesto use: ALWAY Scheck CON(17)-CON(21) to seeif their values are reasonable.

CON(17) should agree ( say within 20%) with the refining SCALE parameter, assuming the absolute units are
correct.

CON(18), R1 or R1.X, should belessthan the fully stretched tail, unless extra oil is present.
The calculation proceeds by calculating the volume of theinner core:
V1 =(VcH3 + ALFVCHom1) JAGG
Inner radius Ry =( 3V1/410X)1/3
Total volume of amicelle VT =[ Vchain + Vhead group + Vion +
V solvent.(hydration number of head group + hydration number of ion) ].AGG -
(Vion + Vsolvent.(hydration number ion) ).CHARGE
Thevalueof R2 (LTYP(1)=21) isgivenby V1= (4p/3) R23X

Shell thicknessd(LTYP(1)=31) isgivenby V1= (4p/3)(R1+d)2(R1X + 0d) so distheonly positive solution
of:

&3+ RX+2)2 + R2(2X+1)d- 3( V1 -V1)/4 =0

KnowingViand V; and the scattering lengths the program calculatesr 1 andr » and the coefficient of
j1(ug)/u;. Adding oil makes the above equations alittle more complicated.

APPENDIX D -AN EXAMPLE INTERACTIVE SESSON
Input typed by the user is underlined, text in [square brackets] are explanatory comments added | ater.

$@runfish
Wel come to the FISH data anal ysis program enter HELP
after Comuand> if you are |ost.
pl ease type commands using only UPPER CASE
Command> READ 2658. Q

[ start sequential reading of datafile]
DATA | NPUT ROUTI NE, READS FROM FORTRAN STREAM NO. 1

UP TO 9 SETS ("WORKSPACES') MAY BE USED
ENTER O (RETURN) TO | GNORE, OVERWRI TES PREM OQUS SET OF SAME NO.
91 TO REWND, 99 TO STOP, 95 TO SEARCH

LOQ Mon 22- MAY- 1989 16: 42SAMPLE: 2658 EMPTY CAN: 2646

Lanmbda 2.00 10.00 Phi -90. > 90. deg Radii 35.0 335.0



SAVE AS SET NO. = ? 1
[ lets keep this data as set number 1]
ENTER LOCAL LABEL FOR THI S SET (All)= 2658
3 (F12.5, 2E16. 6)

LOQ Mon 22- MAY-1989 16: 42SAMPLE: 2658 EMPTY CAN: 2646
Lanmbda 2.00 10.00 Phi -90. > 90. deg Radii 35.0 335.0
SAVE AS SET NO. = ? 99 [ get out of theinput loop ]

[ letstry tofit thedata...]
Command> FIT

1- READ MCDEL FI LE 4- CALC ONLY, CHOGSE Q

2- CHOOSE OBS, CALC SETS ETC. 5- 1 NDEX

3-ENTER FI T ROUTI NE 6- RETURN TO MAI N ROUTI NE
1

[ start to read model file LSINP.DAT ]
LSQ@ N READS MODEL DESCRI PTI ON FI LE FROM FORTRAN STREAM 3
ENTER O- TO | GNORE, 1-USE THI S MODEL, 9-REW ND

Gaussi an coil [printsfirst 4 record of each model infile]
for polymers
1 14 1 Const 3. 500000E+02 0. 000E+00 0.4 0.00E+00
214 2 Rg 7.500000E+01 0. 000E+00 0.4 0. 00E+00
3 3 1BKGA 5. 000000E+00 0. 000E+00 0.4 0. 00E+00
4 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0. 00E+00
USE= [pressed return to enter zero, and read next model]
SI NGLE SPHERE PLUS BKG
1 1 1C 1. 842795E- 04 5. 014E- 06 1.0 0.00E+00
2 1 2R 1. 000000E+02 0. 000E+00 1.0 0.00E+00
3 3 1BKGA 9. 848869E- 02 1. 601E- 02 1.0 0.00E+00
4 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0. 00E+00
USE=0
POLY DI SP SPHERES PLUS BKG CONSTRAI NED TO FIT RM AND LAM
1 6 81 R**N VOL 1. 842795E 04 5. 014E- 06 1.0 0.00E+00
2 6 2 R-RL 7.326303E+01 0. 000E+00 -1.0 O0.00E+00
3 6 3R 2.997124E+01 0. 000E+00 -1.0 O0.00E+00
4 6 4N -1. 500000E+00 0. 000E+00 0.0 0. 00E+00
USE=1 [use thismodel and get out of input loop]
1- READ MODEL FI LE 4- CALC ONLY, CHOCSE Q
2- CHOOSE OBS, CALC SETS ETC. 5- 1 NDEX
3- ENTER FI T ROUTI NE 6- RETURN TO MAI N ROUTI NE
2 [now proceed around the main fit menu |

NO. OF SETS OF DATATOFIT ( MAX 3, (I11) ) =1

ENTER DATA SET nunbers for:

OBS observations i.e. data to be fitted.

CALC for results of nodel cal cul ation.

BKG if you are about to use experinental

subtraction, nmodel 4, ( WORK is ALSO

required !)

POLY is needed for polydispersity e.g. for
nodel 6
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WORK is for polynonm al background, nodel 3,
and/ or observed background nodel 4, which
are not
sneared so are kept separate.
UNSMEARED optional to save unsmeared when
sneari ng.
P(Q optional to save formfactor separately.
S(Q optional to save structure factor
separately.
BETA(Q optional beta ratio for polydisperse.
DEBUG( Q optional for anything else !
Enter zeroes (spaces) for sets not required.

OBS, CALC, BKGD, POLY, WORK, UMBMEARED, P(Q, S(Q, BETA(Q, BUXQ
ENTER SET NUMBERS FOR EACH (101 1)

1203456780 [ decides which data set to fit and where to store the output ]
REFINING 1 SETS OBS CAL BKG PLY WRK USM PQ SQ BET DBG
2658 1 2 0 3 4 5 6 7 8 0
1- READ MODEL FI LE 4- CALC ONLY, CHOCSE Q
2- CHOOSE OBS, CALC SETS ETC. 5- 1 NDEX
3- ENTER FI T ROUTI NE 6- RETURN TO MAI N ROUTI NE

3
FI TTI NG CALCULATI ON ROUTI NE, TYPE PP TO SEE THE MODEL,
RUN TO CALCULATE, HELP FOR A LI ST OF COMVANDS

>
PP [look at whole model ]
T 1P10S 1C 2N 5
W1l1K 0OIP1M1IY1Q-6R-6 -11 -11 1 0 2 0 0
0 0
POLY DI SP SPHERES PLUS BKG CONSTRAI NED TO FIT RM AND LAM
1 6 81 R**N VOL 1. 842795E 04 5. 014E- 06 1.0 0.00E+00
2 6 2 R-RL 7.326303E+01 0. 0O00E+00 -1.0 0.00E+00
3 6 3R 2.997124E+01 0. 000E+00 -1.0 0. 00E+00
4 6 4N -1. 500000E+00 0. 000E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 000000E- 01 0. O00E+00 0.0 0. 00E+00
6 2 2 R-M D 6. 000000E+01 4.136E-01 1.0 0.00E+00
7 3 1BKGA 9. 848869E- 02 1. 601E- 02 1.0 0.00E+00
8 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0. 00E+00
9 3 3 CcQ=2 0. 000000E+00 0. 000E+00 0.0 0.00E+00
10 99 1 SCALE 1. 000000E+00 0. 000E+00 0.0 0. 00E+00
1 1 2658 CALC 2 BKG 0 POL 3 SSE= 0.000E+00

CONSTRAINT 1 TYPE 3 USE= 1
V( 2) =20 V( 5) * V( 6) R2- R1=2*L *RM

CONSTRAINT 2 TYPE 4 USE= 1
V( 3) =(1.0- V( 5) )* V( 6) RI=(1-L)*RM

1. 000E-01 1.843E-04 3.112E-01 2. 000E+00 1. 032E+02
>R [ Rfor RUN to start fitting, FISH first asks for
integration scheme numbers, we enter -11 to test]
NTEGRATI ON SCHEME FOR I (Q K6 = (*)
0

|
( 0-7, -VE TO LI ST WEI GHTS, -11 TO TEST ALL, SET K6<0 TO GET HERE )
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-11
TEST AT @& ? (*)
.1
Met hod F**2(0Q F(Q SUMX
0 SIMPSON 2.284441E+13 -8.243047E+07 1.210804E+04
1 GAUSS 4 1. 850529E+13 -8. 009058E+07 1.210425E+04
2 GAUSS 10 2. 285260E+13 -8.242504E+07 1.210481E+04
3 RT+LN 10 2.285226E+13 -8.242519E+07 1.210481E+04
4 GEN 10 2.279486E+13 -8.242452E+07 1.210480E+04
5 GAUSS 16 2.285261E+13 -8.242503E+07 1.210481E+04
6 GAUSS 32 2. 285261E+13 -8. 242500E+07 1.210481E+04
7 GAUSS 64 2. 285261E+13 -8. 242500E+07 1. 210481E+04
| NTEGRATI ON SCHEME FOR | (Q K6 = (*)
( 0-7, -VE TO LI ST WEI GHTS, -11 TO TEST ALL, SET K6<0 TO GET HERE )
-
| NTEGRATI ON SCHEME FOR MOMENTS OF P(R), K7= (*)
-11
0 SIMPSON V= 6.8530E+09 SIG'2= 1.7402E+02 RBAR= 4. 7706E+01
ENT= 3. 8283E+00
1 GAUSS 4 V= 6.8504E+09 SI G*2= 1.7389E+02 RBAR= 4.7704E+01
ENT= 1. 0824E+00
2 GAUSS 10 V= 6.8529E+09 SIG-2= 1.7402E+02 RBAR= 4.7706E+01
ENT= 1. 9536E+00
3 RT+LN 10 V= 6.8529E+09 SI G*2= 1.7402E+02 RBAR= 4.7706E+01
ENT= 1. 7930E+00
4 GEN 10 V= 6.8529E+09 SIG2= 1.7402E+02 RBAR= 4. 7706E+01
ENT= 1.5818E+00
5 GAUSS 16 V= 6.8529E+09 SIG2= 1.7402E+02 RBAR= 4.7706E+01
ENT= 2. 4080E+00
6 GAUSS 32 V= 6.8529E+09 SI G*2= 1.7402E+02 RBAR= 4.7706E+01
ENT= 3. 0869E+00
7 GAUSS 64 V= 6.8529E+09 SIG*2= 1.7402E+02 RBAR= 4.7706E+01
ENT= 3. 7725E+00
| NTEGRATI ON SCHEME FOR MOMENTS OF P(R), K7= (*)
7 [now it continues with proper calc]
POLYDI SPERSE R= 3.00E+01 TO 9.00E+01 N= 1 TO 31

DR=N(4)= 2. 00E+00 RVMAX=N(5)= 9.00E+01

PM N= 3. 803E- 14 PMAX= 1.250E-11 ENT= 3. 773E+00 B=N(7)= 0. 000E+00
VNORME 1.84280E-04 SIG(R)/RB= 2.7652E 01 S| G*2= 1.7402E+02
RBAR= 4.7706E+01 AREA P(R)= 3. 2551E- 10

WVEI GHT FUNCTI ON TYPE (K1=) 1, | F K1=1, WIS = 1/SIGwWA**2 , OTHERW SE
UNI'T
WI's
CcYyCc 1 49 DATA+ 0 PRED, 3 PAR SWSE= 9.256E+03 XDWE= 9. 171E+03 VAR=
1. 928E+02
>1 6 [ look at first 6 parameters]
1 6 81 R*N VOL 1. 842795E 04 1. 789E- 04 1.0 -8.65E-05
2 6 2 R-RL 6. 000000E+01 0. 000E+00 -1.0 0.00E+00
3 6 3R 3. 000000E+01 0. 0O0OE+00 -1.0 0. 00E+00
4 6 4N - 1. 500000E+00 0. 000E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 000000E- 01 0. 000E+00 0.0 0.00E+00
6 2 2 R-M D 6. 000000E+01 1. 238E+01 1.0 2.57E+01
>R [ run another cycle]
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POLYDI SPERSE R= 4.28E+01 TO 1.28E+02 N= 1 TO 43

DR=N(4) = 2.00E+00 RMAX=N(5)= 1.28E+02

PM N= 7. 315E-15 PMAX= 1.656E-12 ENT= 3. 765E+00 B=N(7)= 0. 000E+00
VNORME 9. 77584E-05 SIGQ R)/RB= 2.7495E- 01 S| G *2= 3.4823E+02

RBAR= 6. 7872E+01 AREA P(R)= 6.0102E- 11

CcYyc 2 49 DATA+ 0 PRED, 3 PAR SWSE= 1.068E+04 XDWE= 1. 060E+04 VAR=
2. 226E+02 [ fit even worse]

>pP
1 6 81 R**N VOL 9. 775841E- 05 2. 330E- 04 1.0 9.46E-04
2 6 2 R2-RL 8.566107E+01 0. 000E+00 -1.0 0.00E+00
3 6 3R 4. 283054E+01 0. 000E+00 -1.0 0. 00E+00
4 6 4N - 1. 500000E+00 0. 000E+00 0.0 0. 00E+00
5 2 1 LAMBDA 5. 000000E- 01 0. 000E+00 0.0 0.00E+00
6 2 2 R-M D 8.566107E+01 3. 213E+01 1.0 -8.31E+01
7 3 1 BKGA 1. 364664E+00 6. 109E-01 1.0 4.34E-02
8 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0.00E+00
9 3 3 CcQr*2 0. 000000E+00 0. 000E+00 0.0 0.00E+00
10 99 1 SCALE 1. 000000E+00 0. 000E+00 0.0 0.00E+00
> 6=F=0. 4 [ damp down shiftson V6 and V1 as they are moving too much ]
6 2 2 R-M D 8.566107E+01 3. 213E+01 0.4 -8.31E+01
> 1=N=0.4
1 6 81 R*N VOL 9. 775841E- 05 2. 330E- 04 0.4 9.46E-04
>R

POLYDI SPERSE R= 2.62E+01 TO 7.86E+01 N= 1 TO 27

DR=N(4)= 2. 00E+00 RVMAX=N(5)= 7.86E+01

PM N= 2. 675E- 13 PMAX= 5. 451E- 11 ENT= 3. 776E+00 B=N(7)= 0. 000E+00
VNORM:E 4. 75972E-04 SI G(R)/RB= 2.7726E- 01 S| G*2= 1.3389E+02

RBAR= 4.1735E+01 AREA P(R)= 1.2544E- 09

CYC 3 49 DATA+ 0 PRED, 3 PAR SWSE= 3.971E+03 XDWE= 3. 355E+03 VAR=

8. 273E+01

>1 7
1 6 81 R**N VQOL 4. 759722E- 04 1.121E-04 0.4 -5.99E-04
2 6 2 R2-R1 5.240216E+01 0. 000E+00 -1.0 0. 00E+00
3 6 3 RL 2.620108E+01 0. 0O00E+00 -1.0 0. 00E+00
4 6 4 N - 1. 500000E+00 0. 000E+00 0.0 0. 00E+00
5 2 1 LAMBDA 5. 000000E- 01 0. 000E+00 0.0 0. 00E+00
6 2 2 R-M D 5.240216E+01 2. 821E+00 0.4 1.28E+01
7 3 1 BKGA 1. 408045E+00 3.879E-01 1.0 3.27E-02

>R

POLYDI SPERSE R= 2.88E+01 TO 8.63E+01 N= 1 TO 29
DR=N(4) = 2.00E+00 RMAX=N(5)= 8.63E+01
PM N= 1. 426E- 13 PMAX= 1.888E-11 ENT= 3. 774E+00 B=N(7)= 0. 000E+00
VNORME 2. 36320E-04 SIGR)/RB= 2.7674E-01 SIG*2= 1.6032E+02
RBAR= 4.5753E+01 AREA P(R)= 4. 7304E- 10
CyC 4 49 DATA+ 0 PRED, 3 PAR SWSE= 3. 888E+03 XDWE= 3. 723E+03 VAR=
8. 099E+01
> PLOT [ still getting nowhere, do aplot to seefit]
PLOT CONTROLS | DEV= 0-EXIT, 1-screen, 2-file
error bars are | EB*sigm (ONLY USE ON LI NEAR PLOT )
| PW1 adds scal ed wts
| DEL spreads graphs apart (IDEL=2 is default)
| DEV, | EB, | PW | DEL = (511)
11



OVER-PLOT P(Q ? ( LTYP,LSYM (211) ) [return to enter zero]
OVER- PLOT RESCALED S(Q ? ( LTYP,LSYM (211) )

OVER- PLOT RESCALED BETA(Q ? ( LTYP,LSYM (211) )

SUBTRACT BACKGROUND ("WRK", MODELS 3&4) ? (ANS 1)

AUTO CHOI CE
X1 0. OOOE+00 0. O0OE+00
X2 2.258E 01 2. 258E-01
Y1 -7.411E+02-7.411E+02
Y2 8. 725E+02 8. 725E+02

AXES 1-AUTO, 2-U CHOOSE, 3-USE CHO CE, 0-RETURN ? 1
TITLE ? [return to enter zero]

[you may be asked to check plot device type, plot appears on screen, lousy fit to data, try another model ]

PLOT CONTROLS |DEV= 0-EXIT, 1-screen, 2-file
error bars are | EB*signma (ONLY USE ON LI NEAR PLOT )
| PWE1 adds scal ed wts
| DEL spreads graphs apart (IDEL=2 is default)
| DEV, | EB, | PW | DEL = (511) [return to get out of plot]

TALK ROUTI NE
>STOP
DI D YOU REMEMBER TO PF AND FF ? , NOW SAVE CALC SETS

1- READ MODEL FI LE 4- CALC ONLY, CHOCSE Q

2- CHOOSE OBS, CALC SETS ETC. 5- 1 NDEX

3- ENTER FI T ROUTI NE 6- RETURN TO MAI N ROUTI NE
1 [ continue reading model file]

ESQl N READS MODEL DESCRI PTI ON FI LE FROM FORTRAN STREAM 3
ENTER O- TO | GNORE, 1-USE TH S MODEL, 9-REW ND
(POLY DI SP SPHERES) * HSS( Q CONSTRAI NED TO FIT RM AND LAM

1 6 81 R**N VOL 1. 842795E 04 5. 014E- 06 1.0 -2.22E-04
2 6 2 R2-R1 7.326303E+01 0. 000E+00 -1.0 0. O00E+00
3 6 3Rl 2.997124E+01 0. O0O0OE+00 -1.0 0.00E+00
4 6 4 N -1. 500000E+00 0. 000E+00 0.0 0.00E+00

USE=1 [ use this one, same as before but with hard sphere structure factor added)]

1- READ MODEL FI LE 4- CALC ONLY, CHOOSE Q

2- CHOOSE OBS, CALC SETS ETC. 5- 1 NDEX

3-ENTER FI' T ROUTI NE 6- RETURN TO MAI N ROUTI NE

3

>p
1 6 81 RP*N VOL 1. 842795E 04 5. 014E- 06 1.0 -2.22E-04
2 6 2 R2-RL 7.326303E+01 0. 000E+00 -1.0 0.00E+00
3 6 3Rl 2.997124E+01 0. 000E+00 -1.0 O0.00E+00
4 6 4 N -1.500000E+00 0. 000E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 500000E- 01 0. 000E+00 0.0 0.00E+00
6 2 2 R-M D 6. 660275E+01 4. 136E-01 1.0 2.30E+01
7 22 1 HS S(Q VOL 1.854555E 01 1. 444E- 02 1.0 -6.66E-02
8 22 2 SPH RADI US 1. 351837E+02 2. 197E+00 0.4 0.00E+00
9 3 1 BKGA 9. 848869E- 02 1. 601E-02 1.0 0.00E+00



10 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0. 00E+00
11 3 3 CcQr=*2 0. 000000E+00 0. 000E+00 0.0 0. 00E+00
12 15 1 SMEAR 1. 000000E+00 0. 000E+00 0.0 0. 00E+00
13 15 2 NSI MP 2. 100000E+01 0. 000E+00 0.0 0. 00E+00
14 99 1 SCALE 1. 000000E+00 0. 000E+00 0.0 0. 00E+00
> OFF [ trick to zero the shifts column]

> N

> R

POLYDI SPERSE R= 3.00E+01 TO 1.03E+02 N= 1 TO 37
DR=N(4) = 2.00E+00 RVAX=N(5)= 1.03E+02
PM N= 3. 686E- 14 PMAX= 7.843E-12 ENT= 3. 768E+00 B=N(7)= 0. 000E+00
VNORME 1.84280E-04 SIG(R)/RB= 3.1124E-01 SIG*2= 2.5661E+02
RBAR= 5. 1469E+01 AREA P(R)= 2. 4582E- 10
SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1. 000 21

NOTE for debug purposes, non-smeared calc is in SET 5

CyC 5 49 DATA+ 0 PRED, 5 PAR SWBE= 9. 930E+03 XDWE= 9. 916E+03 VAR=
2. 159E+02

>1 9
1 6 81 R**N VOL 1. 842795E 04 2.491E- 04 1.0 1.32E-04
2 6 2 R2-R1 7.326303E+01 0. 000E+00 -1.0 0. O00E+00
3 6 3RL 2.997124E+01 0. O0O0OE+00 -1.0 0.00E+00
4 6 4 N -1. 500000E+00 0. O00E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 500000E 01 0. O00E+00 0.0 0. 00E+00
6 2 2 R-M D 6. 660275E+01 1. 813E+01 1.0 1.40E+01
7 22 1 HS S(Q VOL 1.854555E 01 7.833E-01 1.0 -2.72E-01
8 22 2 SPH RADI US 1. 351837E+02 1. 690E+02 0.4 -4. 32E+01
9 3 1 BKGA 9. 848869E- 02 6. 262E- 01 1.0 1.21E+00
> R

POLYDI SPERSE R= 3.63E+01 TO 1.25E+02 N= 1 TO 45
DR=N(4)= 2. 00E+00 RVMAX=N(5)= 1.25E+02
PM N= 1. 665E- 14 PMAX= 6. 382E- 12 ENT= 3. 764E+00 B=N(7)= 0. 000E+00
VNORME 3. 15856E- 04 S| G(R)/RB= 3.1045E- 01 S| G**2= 3. 7255E+02
RBAR= 6.2173E+01 AREA P(R)= 2. 3933E- 10
SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1.000 21

NOTE for debug purposes, non-sneared calc is in SET 5

CYC 6 49 DATA+ 0 PRED, 5 PAR SWSE= 3. 126E+03 XDWE= 3. 080E+03 VAR=
6. 795E+01

>1 9

1 6 81 R**N VOL 3. 158562E- 04 1. 902E- 04 1.0 5.24E-04
2 6 2 R2-R1 8. 866681E+01 0. 000E+00 -1.0 O0.00E+00
3 6 3 RL 3.627278E+01 0. O00E+00 -1.0 0. 00E+00
4 6 4 N - 1. 500000E+00 0. 000E+00 0.0 0. 00E+00
5 2 1 LAMBDA 5. 500000E- 01 0. 000E+00 0.0 0. 00E+00
6 2 2 R-M D 8. 060619E+01 9. 750E+00 1.0 -1.46E+01
722 1 HS S(Q VOL -8.685419E- 02 1.518E-01 1.0 1.32E-01
8 22 2 SPH RADI US 1.179190E+02 1. 564E+02 0.4 5.50E+01
9 3 1 BKGA 1. 306350E+00 3.447E-01 1.0 2.15E-02
>R

POLYDI SPERSE R= 2.97E+01 TO 1.02E+02 N= 1 TO

w
~
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DR=N(4)= 2. 00E+00 RVMAX=N(5)= 1.02E+02
PM N= 1.232E-13 PMAX= 3. 711E-11 ENT= 3. 768E+00 B=N(7)= 0. 000E+00
VNORME 8. 40031E-04 SIG(R)/RB= 3.1128E 01 S| G*2= 2.5185E+02
RBAR= 5.0983E+01 AREA P(R)= 1.1528E- 09
SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1. 000 21

NOTE for debug purposes, non-sneared calc is in SET 5

cYyc 7 49 DATA+ 0 PRED, 5 PAR SWSE= 8. 133E+03 XDWE= 8. 118E+03 VAR=
1. 768E+02

>1 9 [ thefit OUGHT to converge as XDWE is same as SWSE]
1 6 81 R**N VOL 8. 400314E 04 2.212E-04 1.0 -5.39E-04
2 6 2 R-RL 7.256344E+01 0. 000E+00 -1.0 O0.00E+00
3 6 3R 2.968504E+01 0. 000E+00 -1.0 O0.00E+00
4 6 4N - 1. 500000E+00 0. 000E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 500000E- 01 0. 000E+00 0.0 0. 00E+00
6 2 2 R-M D 6. 596676E+01 3. 524E+00 1.0 3.24E+00
722 1 HS S(Q VOL 4.478095E 02 1. 780E- 01 1.0 2.13E-02
8 22 2 SPH RADIUS  1.399234E+02 2. 009E+02 0.4 -5.90E+01
9 3 1 BKGA 1. 327847E+00 5. 664E- 01 1.0 -2.61E-02
> 1=N=.5 [ damp down V1 which is oscillating]
1 6 81 R**N VOL 8. 400314E- 04 2.212E-04 0.5 -5.39E-04
>R

POLYDI SPERSE R= 3.11E+01 TO 1.07E+02 N= 1 TO 39
DR=N(4)= 2. 00E+00 RVMAX=N(5)= 1.07E+02
PM N= 4. 870E- 14 PMAX= 2. 092E- 11 ENT= 3. 767E+00 B=N(7)= 0. 000E+00
VNORM:E 5. 70646E- 04 SI G(R)/RB= 3.1107E- 01 S| G*2= 2. 7650E+02
RBAR= 5.3456E+01 AREA P(R)= 6. 7962E- 10
SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1.000 21
NOTE for debug purposes, non-sneared calc is in SET 5
CyC 8 49 DATA+ 0 PRED, 5 PAR SWSBE= 2. 685E+02 XDWE= 2. 487E+02 VAR=

5. 836E+00

> 19
1 6 81 RR*N VOL 5. 706458E- 04 4. 494E- 05 0.5 -1.47E-04
2 6 2 R2-R1 7.612236E+01 0. 000E+00 -1.0 0. O00E+00
3 6 3Rl 3. 114096E+01 0. 000E+00 -1.0 0.00E+00
4 6 4 N -1. 500000E+00 0. O00E+00 0.0 0.00E+00
5 2 1 LAMBDA 5. 500000E 01 0. O00E+00 0.0 0.00E+00
6 2 2 R-M D 6. 920214E+01 1. 101E+00 1.0 2.25E+00
7 22 1 HS S(Q VOL 6.605905E 02 3.671E-02 1.0 4.61E-02
8 22 2 SPH RADI US 1. 163301E+02 2. 390E+01 0.4 3.97E+00
9 3 1 BKGA 1. 301789E+00 1. 027E-01 1.0 -2.45E-03

> R

POLYDI SPERSE R= 3.22E+01 TO 1.11E+02 N= 1 TO 40
DR=N(4)= 2.00E+00 RMAX=N(5)= 1. 11E+02
PM N= 4. 823E- 14 PMAX= 1.610E-11 ENT= 3. 766E+00 B=N(7)= 0. 000E+00
VNORME 4. 97388E-04 SI G(R)/RB= 3.1093E- 01 S| G-*2= 2. 9429E+02
RBAR= 5.5172E+01 AREA P(R)= 5. 3890E- 10
SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1. 000 21
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NOTE for debug purposes, non-sneared calc is in SET 5

CcyC 9 49 DATA+ 0 PRED, 5 PAR SWSBE= 6.053E+01 XDWE= 4. 033E+01 VAR=
1. 316E+00

> 1

1 6 81 R**N VOL 4.973885E 04 2.178E- 05 0.5 1.52E-05
>R

POLYDI SPERSE R= 3.23E+01 TO 1.11E+02 N= 1 TO 40

DR=N(4)= 2.00E+00 RMAX=N(5)= 1.11E+02

PM N= 5. 800E- 14 PMAX= 1. 606E-11 ENT= 3. 766E+00 B=N(7)= 0. 000E+00
VNORM= 5. 05004E-04 SIGR)/RB= 3.1091E- 01 SIG*2= 2.9691E+02
RBAR= 5.5421E+01 AREA P(R)= 5. 3984E- 10

SMEARI NG RQUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1. 000 21

NOTE for debug purposes, non-sneared calc is in SET 5

CyC 10 49 DATA+ 0 PRED, 5 PAR SWBE= 4.341E+01 XDWE= 2. 320E+01 VAR=
9. 438E-01

> 1=N

1~ 6 81 R**N VOL 5. 050041E 04 1. 850E- 05 1.0 2.03E-05

> R

POLYDI SPERSE R= 3.23E+01 TO 1.11E+02 N= 1 TO 40

DR=N(4)= 2.00E+00 RMAX=N(5)= 1.11E+02

PM N= 6. 004E- 14 PMAX= 1. 672E-11 ENT= 3. 766E+00 B=N(7)= 0. 000E+00
VNORME 5. 25346E-04 SIG R)/RB= 3.1091E01 SIG*2= 2.9683E+02
RBAR= 5. 5413E+01 AREA P(R)= 5.6182E- 10

SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI WP = 12 0 1. 000 21
NOTE for debug purposes, non-sneared calc is in SET 5
CYyC 11 49 DATA+ 0 PRED, 5 PAR SWBE= 2.022E+01 XDWE= 8. 952E-03 VAR=
4. 396E-01
> R
POLYDI SPERSE R= 3.23E+01 TO 1.11E+02 N= 1 TO 40
DR=N(4)= 2.00E+00 RMAX=N(5)= 1.11E+02
PM N= 5. 997E- 14 PMAX= 1. 671E-11 ENT= 3. 766E+00 B=N(7)= 0. 000E+00
VNORME 5. 24995E-04 SIG R)/RB= 3.1091E01 SIG*2= 2.9682E+02
RBAR= 5.5412E+01 AREA P(R)= 5.6147E- 10
SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1. 000 21
NOTE for debug purposes, non-sneared calc is in SET 5
CYC 12 49 DATA+ 0 PRED, 5 PAR SWSE= 2.021E+01 XDWE= 3. 490E-04 VAR=
4. 394E-01
> R
POLYDI SPERSE R= 3.23E+01 TO 1.11E+02 N= 1 TO 40
DR=N(4)= 2.00E+00 RMAX=N(5)= 1.11E+02
PM N= 5. 998E- 14 PMAX= 1. 670E-11 ENT= 3. 766E+00 B=N(7)= 0. 000E+00
VNORME 5. 24919E-04 SIG R)/RB= 3.1091E-01 SIG*2= 2.9682E+02
RBAR= 5.5413E+01 AREA P(R)= 5.6137E-10
SMEARI NG ROUTI NE CALLED

NPSMEAR, NSHAPE, SCALE, NSI MP = 12 0 1.000 21
NOTE for debug purposes, non-sneared calc is in SET 5
CYC 13 49 DATA+ 0 PRED, 5 PAR SWSE= 2.021E+01 XDWE= 3. 399E-04 VAR=



4. 394E-01
> PP [ fit converged, XDWE issmall compared to SWSE ]
T 1P14S 1C 2N 5
Wi1l1K 0IP1I1MS1I1Y1Q 7R 7 6 1 1 0 2 0 49
13 5
(POLY DI SP SPHERES) * HSS( Q) CONSTRAI NED TO FIT RM AND LAM
1 6 81 R**N VOL 5.249193E- 04 1. 261E- 05 1.0 7.24E-08
2 6 2 R2-R1 7.893859E+01 0. 000E+00 -1.0 0. 00E+00
3 6 3Rl 3. 229306E+01 0. 000E+00 -1.0 0. 00E+00
4 6 4N - 1. 500000E+00 0. 000E+00 0.0 0. 00E+00
5 2 1 LAMBDA 5. 500000E- 01 0. 000E+00 0.0 0.00E+00
6 2 2 R-M D 7.176235E+01 3. 436E- 01 1.0 -1.19E-03
722 1 HS S(Q VOL 1.150149E 01 1. 060E- 02 1.0 4.80E-05
8 22 2 SPH RADIUS  1.183947E+02 3. 820E+00 0.4 8.52E-02
9 3 1BKGA 1. 297392E+00 2.811E-02 1.0 -4.03E-06
10 3 2 B*Q 0. 000000E+00 0. 000E+00 0.0 0.00E+00
11 3 3 cQ*2 0. 000000E+00 0. 000E+00 0.0 0.00E+00
12 15 1 SMEAR 1. 000000E+00 0. 000E+00 0.0 0.00E+00
13 15 2 NsI WP 2. 100000E+01 0. 000E+00 0.0 0. 00E+00
14 99 1 SCALE 1. 000000E+00 0. 000E+00 0.0 0. 00E+00
1 1 2658 CALC 2 BKG 0 POL 3 SSE= 2.021E+01
CONSTRAINT 1 TYPE 3 USE= 1
V( 2) =2.0V( 5) *V( 6) R2- R1=2*L *RM
CONSTRAINT 2 TYPE 4 USE= 1
V( 3) =(21.0- V( 5) )* V( 6) R1=(1-L)*RM
1. O00E-01 5. 249E-04 3.109E-01 2. 000E+00 1.112E+02
>pLOT
PLOT CONTROLS |DEV= 0-EXIT, 1-screen, 2-file
error bars are | EB*signma (ONLY USE ON LI NEAR PLOT )
| PA£1 adds scaled wts
| DEL spreads graphs apart (IDEL=2 is default)
| DEV, | EB, | PW | DEL = (511) 11 [ to screen with errors|
OVER-PLOT P(Q ? ( LTYP,LSYM(211) ) 1 [ solid lin€]
OVER- PLOT RESCALED S(Q ? ( LTYP,LSYM (211) ) 54 [ %]
OVER- PLOT RESCALED BETA(Q ? ( LTYP,LSYM(2I11) ) 3 [ dashed]
SUBTRACT BACKGROUND ("WRK", MODELS 3&4) ? (ANS 1) O
AUTO CHOI CE B

X1 0. OOOE+00 0. O0OE+00
X2 2. 258E- 01 2. 258E-01
Y1l -2.900E+02-7.411E+02
Y2 8. 620E+02 8. 725E+02

AXES 1-AUTO, 2-U CHOOSE, 3-USE CHO CE, 0-RETURN ? 1
TITLE ?
EXAMPLE FIT TO RUN 2658 W TH POLYDI SP | NTERACTI NG SPHERES

[ plot 1 appears here]

S(Q * 5.00E+02 + 0. 000E+00 [ rescale and shift used to overplot S(Q) on
same axes)
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BETA(Q * 5.00E+02 + 0. 000E+00

PLOT CONTROLS |IDEV= 0-EXIT, 1-screen, 2-file
error bars are | EB*signa (ONLY USE ON LI NEAR PLOT )
| PW=1 adds scaled wts
| DEL spreads graphs apart (IDEL=2 is default)
I DEV, | EB, | PW I DEL = (511) [ returnto leave plot ]

TALK ROUTI NE
> STOP [ go back to FIT menu]
DI D YOU REMEMBER TO PF AND FF ? , NOW SAVE CALC SETS

1- READ MODEL FILE 4- CALC ONLY, CHOCSE Q

2- CHOOSE OBS, CALC SETS ETC. 5- 1 NDEX

3- ENTER FI T ROUTI NE 6- RETURN TO MAI N ROUTI NE

6 [ go back to main program]

Command> LI ST

WRI TE SET | TO DATA FILE (J=1), MONI TOR(J=2) OR TO

SCREEN(J=0) 1,J=? (211) 21 [ savecalculated [(Q) in afilg]
SET( 2 ) CAL
OLD TI TLES:
CAL
CAL
TI TLE:
26- MAY- 89 09: 24: 22 CAL
CAL

0- CONTI NUE, 1-CHANGE TITLES, 2-RETURN ? 1
ENTER TWO Tl TLE RECORDS (14A4, 20A4)

FIT TO 2658.Q

second title line

TI TLE:
26- MAY-89 09: 24: 22 FIT TO 2658. Q

0- CONTI NUE, 1-CHANGE TITLES, 2-RETURN ? 0

Command>PLOT [ usethelong plot routine to draw the P(R) in set 3]
Wel come to the PLOT routine, enter HELP after

Pl ot > if you are | ost
Pl ot >READ

HOW MANY CURVES ? (11) 1
FOR EACH CURVE TO BE DRAWN ENTER ON THREE LI NES :
SET NUMBER (1 1)
LTYPE, LSYMBOL, | FOLD, | EB, | NUM- NOT-Q (51 1)
Y SHI FT (F12)
CURVE 1 SET ? (11) 3
LT LSY IFLD IEB INNQ (511) 1
YSHI FT 0.0
Pl ot > SCREEN
AUTO CHOI CE
X1  0.000E+00 0. 000E+00
X2 1.103E+02 2.258E-01



Y1 1. 200E 13-7. 411E+02
Y2 1. 734E 11 8. 725E+02

AXES 1-AUTO, 2-U CHOOSE, 3-USE CHO CE, 0-RETURN ? 1
TITLE ?

POLYDISP R**-1.5 FOR 2658.0Q

[plot 2 appears here ]

Pl ot > STOP
Conmmand> STOP
FORTRAN STOP
$

$ [returnsto VMS operating system]

EXAMPLE F1T TO RUN 2658 WITH POLYDISP |NTERACTING 5PHERES

% 10®
Lo ¥ T T ¥
Afrendix D
o8 |\« Ple) foT 1
(G5 € Sereen dDume)

sla)pl@) = caLe

5’(@)4_ RESLALES TO SuiT Py
XXXXx XX X X XX < ¥ X X X X X X x X X

06 F

o4k Kf ] 4
\ya)—ﬂeeml&b
L~ ‘\ 0R5= ¥+ & (Wit ereoRs
o b \ s oy | R LARGER)
o Yottt S et
0B5- CALL (wiTH ERRRS)
_V.l . / -
T
-0.w L 1 { \
I -3
o 00 150 00 250x 10
50 [t (&>
POLYDISP Rwk-1,5 FOR 2658.Q
x 101
2.019 T T T T T
2017 | Aﬂ’a'/bfx DA
floT 1
0.015 | (G 6 scaeen dumg, 7
ourdivfersty )
0.013 |- ~
0011 -
©.009 |- -1
0.007 |- -
Q-005 = -
0.003 - B
0 I i i 4 1
o 20 40 60 90 100 120

(RavuS)
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Appendix E - L east Squaresand Marquardt Fits

Genera non-linear |least squares fitting, of the sort required for most SANS data, relies on some
understanding of statistical distributions, estimation of functions and solving a set of equations ( matrix
inversion). Thus the subject usually appears towards the end of text books on “numerical methods” ! All
that | can do hereistry to portray very briefly the route that is followed. Chapter 15 of “Numerical Recipes’
gives avery much more rigorous account. [“Numerical Recipesin FORTRAN, The art of scientific
computing”, W.H.Press, S.A.Teukolsky, W.T.Vetterling & B.P.Flannery, Cambridge University Press, 2
Edition, 1992, reprinted 1994. Other versions of the book & software CD are available for Pascal, C, & Basic.

]

Suppose our dataare y; wherei =1to N at pointsx - these could be SANS intensities at N values of
scattering vector Q value.

L et the parametersin our model be a; wherej =1to M
Calculated datapointsare CALG = function( x, a;, a,, ... ay)
N

2

, , . N @y, - CALC, 6"
Definea “merit function” c = a -
i=1

S a

@

If the errors (standard deviations) on datas; areindependent and have anormal (Gaussian) distribution
then statistical theories tell us that the minimum inc®isthe “most likely” solution and to expect that ¢/(N-
M) ~1.

(A normal distributioniswithin+2s 68% of thetime, +3s 95% of thetime. The “Poisson distribution” for
neutron counts has a broader tail for small counts. Since the merit function isthen not quite correct,
“outliers’ can be aproblem, set their W, to zero 7?)

At the minimum of ¢ its derivative with respect to each of the parameters a, will be zero:
c? . . CALC
M:0 gives M equations é_V\/i(yi - CALCI)b:O @
ﬂaj i ﬂaj
Whereweights W, = 1/s;

For the simplest case the model is “linear” in the parameters, each of which isjust ascale factor in front of
some mathematical function ( which itself may be very non-linear) so that:

M M
CALG =4 a,Fun,(x)=a a,D, ®
k=1 k=1

Note though that each “basis function” is actually just the derivative D; of the calculated model! for that
parameter:

_CALG
Di]. =
fa,
Inthelinear case the set of equations (2) can be solved exactly to give the parameter values a,. We will now

however make the equations slightly more complicated by anticipating the method for the more general
“non-linear” case!

= Fun, (x) @

Assume the present parameters 8" give CALC"" with differencesE = (y; - CALG™")

We need to shift the parametersto a = 8" + Da, to give the best ( or at least asmaller) value of ¢ Since
the problem islinear, we can use (3) to write
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CALC, =CALC™ + 8 Da,D, 6
k
which is substituted into (2) to give aset of M equations:
éVVigEi - éDakDingij =0 (6)
i e k %]

The equations are easier to manipulate in matrix form as:
Da(DTWD) -D'WE=0

which may be rearranged to give the desired a column of parameter shiftsDa as a product of a square “least
sguares matrix” and a column matrix :

Da = (D"WD) *(DWE) @

Dais acolumn vector of M rows, derivative matrix D hasN rows x M columns, weights Wi; are adiagonal N x
N, and differences E isacolumn of N rows. Superscripts“T” mean transpose (i.e. Di,»T =D;;) and*-1
means the matrix inverse.

[ If you are not familiar with thiskind of notation just concentrate on the meaning of theresults ! If an
example might also help, then for the case of just two parameter and 3 data points, the simultaneous
eguations to be solved to find shiftsa = Da; & b=Da, are:

aWD,* +WD,.* +WD,,%) +b(WD,, D, +WD,,D;, +WD;, Dy,) - (WD, E, +WD,,E, +WD; E;) =0

aWD,, Dy, +WD;, Dy, +WD, Dy) +bWD,,* +WD,,” *WD,) - (WD,E, + WD, E, +WD,E;) =0
]

Ina“linear case” (such asapolynomial or straight line fit) Da gives an immediate and exact solution, even
with zero starting parameters.

For a“non-linear” case (asamost all SANS) equations (3) to (5) are only approximately true, so the
solution must be iterated. Note that the derivatives D;; are now no longer constant at each Q value, so they
must be recal culated for each iteration.

Fortunately it can be shown that ignoring the second derivativesin (3) is not detrimental, since they are
usually small and statistically they should tend to cancel out when summed over the data. Nor does this
have an effect on the location of thec? minimum, only on the route taken to reachiit.

It isaremarkable fact that the |east squares method works at all for the “norHlinear” cases found in SANS!

M x M matrix C=(D'WD)is the variance-covariance matrix, its diagonal elementsare G; = s the square
of the statisitical standard deviation for each parameter a, - assuming the conditions mentioned above ons;
for thedataarevalid! Effectsof systematic errors, such asimperfect data treatment, or say Q resolution
not explicitly included in the model must be considered separately !

Frequently the parameter “errors’ obtained for SANS data are unrealistically small, as sometria and error
adjustments and common sense will easily show. Off-diagonal elements C; give the correlation coefficients
between parameters, which are helpful to identify poor parametrisation of a model.

Note there is no standard notation for the different matrices (e.g. derivatives D are sometimes called Jfor
Jacobian). In some applicationsit may be useful to include off-diagonal elementsin the weight matrix W to
alow for “correlation” between data points. This can help to give more realistic error estimates.



Practical results

All that is needed for |east squaresfits are (a) routines to cal culate the model CALC and its derivatives D for
agiven set of parameters and Q values and (b) aroutine to invert asymmetric matrix (i.e. to solve a set of
equations).

Derivative D;; may be calculated numerically (but less reliably) by simply shifting the value of a parameter g
temporarily by asmall amount dand calling the model routine again:

1
D; »E(CALC(Xi a,8,,..(a +d),...a)) - CALC(xi,al,aZ,..aj,...ah))

The “non-linear” nature of most SANS problems requires that the least squares solutions are iterated. Ina
well behaved system each iteration gets closer to thec? minimum. When c? ceases to improve further the fit
has “converged”. Alasnot all systemsare “well behaved”, so we must learn some ways to cope !

Steepest Descent & the Marquar dt method

If the c® merit function (1) is not well approximated by a quadratic near its minimum then the iterative least
squares solution may not work.

Some oscillatory behaviour of given Da between iterations may be damped down by applying only a
fraction of the calculated shifts. Worse behaviour might require some time consuming trial & error on key
parameters.

Following the “ steepest descent” gradient of thec? surface may be an alternative route to the desired
minimum. Least squares tends to spiral down at right angles to the steepest descent of thec? surface,
thereby exploring more parameter space and being less likely to become stuck in alocal minimum, but often
in badly behaved cases “blowing up” altogether.

Marquardt (using an idea of Levenberg) noted a simple connection between the |least squares and steepest
descent routes. Replacing (D WD) by a constant diagonal gives the steepest descent route. By multiplying
the diagonal elements of (D'WD) by (1+ ) where| issmall for least squares or large for steepest descent
givesaroutethat varies between the two extremes.

] A - Well behaved least squares, explores
Schematic Least Square & Steepest Descent, reasonable parameter space.

on a 2 parameter c’surface

A
B - Least squares “blows up” as shiftsare

too large (could be damped down ?)

C - Steepest descent from new starting
point finds best fit.

D - Steepest descent finds alocal minimum.

The Marquardt method would steer
between B & D, but still might fall into the
local minimum !




The Marquardt recipe:

(i) start withamodest | ~1,

(ii) compute D (and saveit) and c?

(iii) calculate parameter shifts using (7) with diagonal elements of (D"WD) multiplied by (1+])
(iv) compute new parameters and their ¢2

(v) if fit has converged, or too many iterations, stop !

(vi) if fit improves, keep new parameters, dividel by 10 and return to (ii)

(vii) if fit worsens, multiply | by 10, return to (iii) ( no new computation of D)

NOTE - to obtain the proper error estimatess; on parameters g; set | =0 for afinal calculation.

Thefit isguaranteed to improve, if only slowly, but not (in poorly behaved cases) to find aglobal minimum
for c? asthe steepest descent route can become stuck in a*“local minimum”. It may be important, aswith
ordinary least squares, to try to find the solution again from slightly different starting points.

CONSTRAINTS

In many cases physical constraints and prior knowledge ( e.g. shell to core molar volume ratio, consideration
of fully extended surfactant tail lengths) may be required to |ocatephysically meaningful parametersfrom
amongst whole families of possible numerical solutions.

Absolute intensities are also vital either by constraining scale parameters to known volume fractions or
concentrations or, where samples or intensities are less well known, by checking that fitted scale parameters
areconsistent with sample compositions.

If one parameter is constrained to another, then one could rewrite the model with one less parameter. Thisis
not of course very convenient, so it is better to write the model with the maximum likely number of
parameters that could be adjusted or investigated.

1CALC
If parameter a; is a functionf(ay) of parametera, the model routine will give ﬂTI so the least squares
i
. T1CALC
calculation hasto add an extraterm to ﬂ— by:
ay

CALG _fCALC, 1CALC fa, _fCALC fCALG T (a)
Ta, — Ta Ta, fa,  Ta fa, Ta,

The FISH program will do thisfor avariety of pre-programmed constraint functions.

©RKH 2/11/98 LEAST SQUARESFITS



Appendix F - NUMERICAL INTEGRATION - GAUSSIAN QUADRATURES

Calculation of SANS intensities (and their derivatives) frequently requires some numerical integration,
for example to sum over apolydisperse particle size, or in the form factors for monodisperse rods (discs)
or ellipsoids.

Most of uswill be familiar with the “trapezium rule” for integrating N data points, equally spaced h
apart. Apart from the weights of ¥z on thefirst and last points, thisisjust “adding up the data” .

Q YI> 3y, + ¥, + Yotootyys +3, ] ®

Simpson’ srule gives a better answer with the same points but different weights asit is equivalent to
fitting a cubic equation through adjacent groups of three points.

Y h
Q' YOIdx» Ty, + 4y, + 2y, +dy, . +2y, o+ Ay tY] @

Removing the restriction on the points being equally spaced allows use of much more efficient
“qguadrature methods’, which use atable of specially chosen x values ( abscissae) and weights for they
values at those points. Since we areintegrating the model function, the non-equally spaced points
pose no problem! By some clever mathematics we may for example use a*“ 10 point Gaussian
quadrature” to integrate a function asif it were fitted by a 10" order polynomial, or say a 64 point
quadrature for an order 64 polynomial. The coefficientsfor a 10 point “ Gauss-L egendre” quadrature are
illustrated below. Note that though for symmetry the integration interval is here -1 to +1 the abscissae
and weights can easily be rescaled to suit agiven range.

6lly(x)dx » 0.06667(y(- 0.9739) + y(+0.9739)) + 014945 y(- 0.8651) + y(+08651)) +

+0.21909( y(- 0.6794) + y(+06794)) + 026923 y(- 0.4334) + y(+04334)) +

+0.29552( y(- 01489) + y(+01489)) ®)

IF the function y(x) iswell approximated by a polynomial then the resulting integral will be more
accurate than say using Simpson’s rule with many more points, and hence the fitting program will run
more quickly. The abscissae in a Gaussian quadrature are grouped more closely towards the ends of the
integration range.

(Actual integrations need the abscissae and weights to many more decimal placesthan illustrated in (3)
above. Originally one looked them up in tables, but nowadays simple iterative routines are available to
calculate them as needed. The precision of the computer becomes important for higher orders of
quadrature. )

With modern computers the choice of integration scheme only makes a significant difference in speed
for multi-dimensional integrals, such asfor “oriented rods’. Inthislatter case one must however be
careful asthe form factor for long, thin rods has strong oscillations for which Gaussian quadrature does
not work well and Simpson’s Ruleis more appropriate for parts of the integration. It isadvisablein any
circumstance to test different integration schemes quite carefully, with increasing numbers of pointsto
ensure that they converge adequately for a particul ar problem.

A full discussion of numerical integration methods (e.g. Chapter 4 in Numerical Recipes) focuses on
issues such as estimation of accuracy and effects of singularitiesin the function. Certain functional
singularities can be included in the quadrature, so that one “fits” say a polynomial times an exponential.
These giverise to whole families of quadraturesin addition to the usual “polynomial” Gauss-Legendre,
such as Gauss-Chebyshev, Gauss-Laguerre, Gauss-Hermite and Gauss-Jacobi.

One advantage of the simple “trapezium rule” equation (1) isthat is may efficiently be extended to
include extra points between those of the previous set of points, to give an iterative answer with easily
assessed “accuracy”. (Variouslibrary routines are availablein this area.)



The Gaussian quadrature method does not have this property, increasing the number of points results
in acompletely new set of abscissae and weights. The Gauss-Kronrod method is an “ adaptive’
integration scheme which expands the Gauss-L egendre polynomialsin an optimal way, re-using results
of the previousiteration. It uses a sequence of N points such as N=10, 21, 43, 87. Such “adaptive”
schemes usually require to be given both an absolute and relative error expected for the result of the
integration in order to know when to stop!



