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INTRODUCTION 

This report describes the data fitting program FISH, written by R.K.Heenan.    The program is best suited to the fitting of 
a curve with a relatively large number of data points by a model with a few parameters.  There are presently some eighty 
available models, mostly concerned with the fitting of small angle diffraction data, though others such as polynomial 
fitting and peak fitting are of more general use, as are the graphics routines. 

The mathematical model used to fit the data and the values of the parameters in a model may be changed interactively by 
the user.   This is in contrast to most "least squares packages" where a model routine has to be compiled and linked by 
the user with a standard library.  Complete model descriptions or previously saved sets of parameter values may be 
recalled from a file at any time.  Any set of results may be written out to file.  All actions of the user are recorded in a 
monitor file, which may later be sent to a printer for closer examination.   Values of parameters may be fixed, tied together 
or constrained as the iterative fit proceeds.   

A simple graphics interface allows plots of the results. The FISH program is designed to be easily portable from one 
computer to another.  The FISH2 program first released in Oct. 1999 runs under VMS, Windows and Unix, using PGPLOT 
graphics routines.  (FISH3 with a graphical user interface in IDL is under development for VMS and Windows.) 

A typical run of the program uses READ or READ3 open a data file, the user selecting a workspace ( data set or memory) 
numbered 1 to 24, to store the data.  The command FIT then enters the set up routine for data fitting.  A "model file" is 
read containing previously set up model descriptions, one of which is selected for use.  Data set numbers are then 
chosen for the observed, calculated ,  background and other necessary data stores ( such as polydispersity, structure 
factor etc.).  The interactive FIT routine itself may then be started.  The RUN command causes a single cycle of least 
squares fitting to be done. PP for Print Parameters will then display the results.  After STOP to leave the interactive 
routine and returning to the main program a LIST command may be used to save calculated data sets in a file.  Detail 
information on each of these stages and on the format of the various files is given below.  An example interactive session 
is included as Appendix D. 
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FITTING METHODS 

Fitting is by a standard iterative linear least squares method, involving computation of first derivatives of each calculated 
data point with respect to each parameter in the model.  Derivatives are calculated analytically in easier cases, else from 
the result of a small numerical shift in one direction ( the user may adjust the size of these shifts).  Convergence may 
often be improved by applying less than the computed least squares shifts.  This may be done via the "partial shift" 
associated with each parameter, the value of which in the program also determines whether a parameter is refining or not 
(ON or OFF) or whether it is  tied to another parameter ( > 0, = 0, or -1 respectively).  Calculated shifts are often too large 
due to ignoring higher derivatives.  If not "damped" down in some way dramatic oscillations in parameter values may 
occur and the fit then only converges if just one or two parameters are adjusted at a time.  The rate of convergence is 
often best when multiplying calculated shifts by a partial shift of about 0.4. 

A variation of damping procedure is offered by the "Marquardt method" in which  diagonal elements of the least squares 
matrix are multiplied by (1+l), where l starts large and is recomputed at each cycle to obtain optimum convergence.  ( 
Consult standard texts on fitting procedures ).  This has the effect of forcing the fit along the line of steepest descent 
when it is a long way from convergence, gradually moving back to the more tortuous least squares route, which is at 
right angles to this direction, as l decreases.  In this method the goodness of fit is forced to always improve but there is 
no guarantee of finding even a local minimum.  Runs with test data shows that the Marquardt method may not converge 
to the true least squares minimum where that minimum is not well defined (which is usually why one tries to use it).  A 
parameter search and/or different starting points should be used to give some idea of parameter correlation.  Large 
values in the least squares correlation matrix itself  (use command CC to see this ) will also indicate a poorly determined 
fit.  Note that when using the Marquardt method the estimated standard deviations of the parameters become 
unreasonably small - run one cycle of normal least squares before recording their values. 

( To use the Marquardt method enter K2=1 and initialise CON(1) for l by entering N1= 1; to return to least squares enter 
K2=0. ) 
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Some more detailed notes on least squares and Marquardt fitting are given in Appendix E. 

If these methods fail then "predicate observations" may provide an alternative  to simply leaving some parameters at 
fixed values.  An expected value of a parameter is included in the fit as a data item with a carefully assigned weight.  This 
is explained further under "MODEL 5" below, and has proven particularly useful in the field of molecular structure 
determination where a bond length may be allowed to "float" about its chemically expected value. 

Data points to be fitted may be given unit weights ( use K1=0 ) or weighted as 1/E2 (K1=1) or as 1/data ( K1=2, for where 
E = sqrt(data) ), where errors E are read in with the data. If you have no errors, and the usual K1=1 is present in the most 
model file, then FISH will complain about “zero weights”, you will then have to set either K1=0 or K1=1. K1 is the first 
control parameter on the second line of the model file (more later or see LSQ model file format on p43). 

Some experiments have been made with a maximum entropy weights scheme for particle size distributions, this requires 
further development. 

 

SOME PROGRAM PHILOSOPHY  

The main sections of the program are each controlled by a simple command language; if you are stuck simply type HELP 
or H for a list of relevant commands. 

Data are stored in "sets" which are given a number (1-9), these are similar in concept to ( but considerably predate !) 
"workspaces" in the ISIS GENIE program.  Arithmetic manipulation of these sets is catered for, however more complex 
operations are best done elsewhere such as in specific raw data reduction codes or in the GENIE program.  For those not 
familiar with GENIE these workspaces are simply data storage arrays. The model description used to calculate each point 
in such an array is analogous to a list of sequential instructions given to a programmable calculator.  However FISH does 
pre-search the model description for special cases, such as polydisperse particles, which require initialisation. 

Since the initial use was to process small angle X-ray data from a linear position sensitve detector all data sets may be 
stored with "left" and "right" sides with Q or radius respectively descending and ascending in value.  Raw  PSD data 
may then be "centred" and adjusted before binning into Q.   The data files allow for NCH data points, using points NC1 
to NC2  on the "left" and NC3 to NC4 on the "right".   Thus poor data at the ends of the usual ascending Q range may 
simply be ignored, but kept in the file, by setting NC3 >1 and NC4 < NCH  ( see the DATAFILE definition section). 

More detail comments on programming styles are made in the section "Making changes to the program". 

 

HOW TO GET STARTED- the FISHPREF.TXT file 

A file FISHPREF.TXT will be needed in your working directory, as illustrated below. A typical model file LSINP.DAT and 
an example of FISHPREF.TXT and distributed with the program download.  (FISHPREF.TXT provides a simple way to 
keep the operation of FISH2 the same on any platform, by avoiding the use of system variables.)   

! thsi FISHPREF.TXT file needs to be in your working directory 
! lines with exclamation mark are comments and are ignored 
! Need system type VAX (for vms) or WIN (for Win95 or WNT) or LNX (for any linux and unix) 
WIN 
! Need "source directory" for FISH's command definition files 
! ( which are called FCOMMAIN.TXT, FCOMPLT.TXT and FHELPFIT.TXT ) 
C:\FISH2\ 
! 
! then the directory for logging file FISHLOG.LIS and  
! graphics plot files ( scratch area on vax) 
C:\FISH2\WORK\ 
! 
! and finally the directory and name of the LSQFILE containing models  
! file ( you can call it any name you choose.) 
C:\FISH2\WORK\lsinp.dat 
! Inside FISH use SET to switch to another file. 

 

Run the executable, then use READ filename , or READ3 filename command in the main routine to get the input data, 
then try FIT.  Follow through the items 1 to 3 in the FIT control section menu, to decide which set to fit and which sets 
will store the calculated data, etc. Then proceed into the FIT interactive commands section.  Study the example session at 
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the end of this manual.  Use of an existing LSQFILE model file (usually stored as LSINP.DAT) will be a great  help as 
actual examples are easiest to follow. 

 

FORTRAN FILES TO BE ASSIGNED 

There are several files required by or generated by FISH, these can be changed from inside the program using SETUP in 
the main program. They are summarised in the table below.  Files may be called by any appropriate name, but will be 
referred to by the names in the table below throughout this manual.   

Fortran stream 
number 

File name in this 
manual 

Purpose Present default name 

INPUT     

 FISHPREF.TXT Defines important directories and 
initial name of LSQFILE 

FISHPREF.TXT 

 1 DATAFILE Actual data  e.g. Iobs(Q) nnnn.Q 

 3 LSQFILE Least squares model description(s) LSINP.DAT 

OUTPUT    

 2 MONITOR To record what you did MON.LIS 

 4 NEWDATA Modified or calculated data.  
FISH will prompt for a file name. 

FOR004.DAT 

 8 NEWLSQ Modified or new model descriptions 
e.g. to save latest parameter values. 
FISH will prompt for a file name. 

FOR008.DAT 

 graphics  graphical output, default postscript FISHPLOT.PS 

In addition there are three text files which define the command names and minimum abbreviations for the main program, 
the PLOT routine and the interactive FIT routine.  NOTE that the MON.LIS file can become quite large, you may need to 
purge or delete it regularly. 

 

COMMANDS IN THE MAIN CONTROL ROUTINE 

These are the commands available on first entering FISH. Most people will only need to use READ, FIT, LIST, PLOT, 
INDEX, STOP and possibly RANGE.  The minimum numbers of characters for an acceptable abbreviation are underlined.  
Input strings are converted internally to uppercase, up to the first space (so that case sensitive file names in Unix are 
preserved).  The Nov. 2000 version allows spaces in filenames (for Windows). 

HELP 

Lists the entire detailed help file. 

H 

Lists command names only. 

READ-DATA  [filename]  

for ASCII (normal character) files in standard DATAFILE format. Uses DATIN routine and channel 1.  
Filename is optional, if missing the file previously set up will be used, as files may contain many sets of 
data. 

READ3  or R3  filename  

for ASCII (normal character) 3 column Q, Intensity, Error file with a single data set in Fortran free format. 

READ2  or R2  filename  

for ASCII (normal character) 2 column Q, Intensity (without Errors) file with a single data set in Fortran free 
format.  If fitting you may need to use switch K1=2 or K1=1 to set leass squares weights. 
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RNILS  filename  

for standard ILL data file with Q, Intensity, Error. 

OTOKO  filename  

attempts to read OTOKO binary format Xray file, NOT quite working ?, only works on WINDOWS, please 
consult RKH if you need to import such data. 

GETWIR 

for BINARY linear data input, old Daresbury SAXS format in file [RKH.DL]Snnnn.FV4, where nnnn is 
input run number. 

LIST 

to list data set to monitor file ( for printer) or to write out an ASCII data set to the NEWDATA file, in which 
case new title records will be asked for.  ( The ouput ASCII file, default FOR004.DAT, may be read into a 
GENIE workspace by COLETTE command OLD.) 

INDEX 

show details of the sets you have stored. 

ARITHMETIC 

add, subtract, divide, scale, normalise data sets. 

QBIN     - for processing raw linear detector data.  

First enters the RANGE routine, calculates Q values for set I and will rebin into set J, if J non-zero.  
Assumes that raw data channels are equi-spaced, will ask for camera distance, detector element spacing 
and incident X-ray or neutron wavelength.  (Enter a negative Q BIN DELTA Q value to jump back to main 
routine if things go wrong.) 

CENTRE  -  helps to find middle of Daresbury SAXS data set, 

 asks for pixel range L1,L2 to left of beam stop and a guess for mid-point. The mid-point is entered 
multiplied by 10, to give the nearest 0.1 division. Then it sums (N(R)-N(L) )**2 over R corresponding to L 
=L1,L2 where N(i) is the count per channel. A small range of mid-points is chosen, the"best" may be at the 
minimum sum. Use with care and plot results to test !!! 

L-R 

Put Left-Right differences for a Daresbury SAXS set into another data set, e.g. ready to plot.  Results are 
placed on the left side for the full range over which left and right sides overlap. If data is in Q then a linear 
interpolation is done on the right side to force Q values to match the lfet side. 

RANGE n 

Allows removal of points at the ends of the range of data set n.  e.g. to use points 10 to 70 in a set with  
normal ascending Q enter  0  0  0  10  70 

PLOT 

Enters longwinded, complicated, but very flexible plot routine. First you will need to set up a list of sets to 
plot, several can be placed on the same axes. If in doubt about optional parameters enter zeroes to get 
default action.  PLOT has its own command language and help facility as detailed below. 

FIT 

Enters least squares model-fitting program via the FIT menu. This  has its own interactive language and 
HELP command. A large number of models are available. See separate sections below.  It is possible to fit 
more than one linear data set simultaneously with overlapping parameters. 
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SETUP 

Allows new input or output files, so there is no need to exit the progam to switch to another data file. Enter 
zero to just list currently opened files. 

STOP 

Use this for a graceful exit from the program, don't forget to PRINT MON.LIS to the printer if the monitor 
might contain useful information. It should provide a record of what you did on the screen. Tidy up any 
output files, note that on a VAX their names default to FOR00n.DAT, where n is a channel number, if they 
were not assigned elsewhere. 

QUIT 

Same as STOP 

 

COMMANDS FOR THE PLOTTING ROUTINE 

These commands are available after giving PLOT in the main program, note that a completely new command language is 
then in use.  The input here is extremely tedious, however complicated overlaid plots may easily be built up using a 
variety of graph markers. To get into this routine use PLOT in the main routine. To generate a plot a recipe has to be set 
up, by READ, with a list of which work spaces are to be plotted and with which symbols. (i.e. you have to know in 
advance exactly which sets you want to plot as later overlays are not possible at present.)  This recipe is preserved upon 
subsequent calls to PLOT (use LIST to see it), so if you wish to change any of the workspaces a repeat plot can be made 
without having to re-do a READ.  A SCREEN or FILE command will then produce the plot to the appropriate device.   

NOTE the PLOT command in the interactive FIT routine becomes PICT and PLOT then enters a high speed routine to 
show OBS, CALC and OBS-CALC for the present cycle of refinement. This does however redefine the plot recipe !  Skip 
the rest of this section if you are only interested in doing simple fits.  You may however need to use this routine to plot 
say a polydispersity function or to change axis types (e.g. PICT, LOGLOG, STOP from FIT interactive commands to start 
Log(Y) vs. Log(x) plots). 

HELP 

Full help instructions. 

H 

Quick list, or H Command for information on any Command. 

SYMBOL 

lists standard line and symbol types 

READ 

Asks for a list of curves (sets) to be drawn, all on same  axes with different symbols or line types for each. ( 
do SYMBOL for more information)  You will be asked for: 

(a) (I1) Number of curves (up to 9) 

(b) for each curve: 
  (i) (5I1) LTYPE - see below, line type e.g. solid or symbols  
   LSYMBOL - see below, marker type e.g. cross or asterix 
   IFOLD =1 to fold about centre 
   IEB =n to add error bars of +-n*E(i) 
   I_NUM_NOT_Q=1 to plot against channel rather than Q 
       e.g. for + signs with error bars enter 5301 
  (ii) if data has left and right sides, (2I1) LTYPE, LSYM  for the left side data 
  (iii) YSHIFT - added to Y values at plot time 
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line types LTYP are:   1 - straight line segments, 
                                  2 - smooth curve(local polynomials)            3 - dashed,          4 - dotted       
                                  5 - use symbols of type LSYM as specified by : 
               LSYM=      1 - up triangle,          2 - down triangle,      3 -  + ,         4 -  X ,       5 - square,   
                                  6 - diamond,             7 - circle,                  8 -  *       
 
NOTE:  Some symbol or line type options may not be implemented on particular computers.    
For symbols on a solid curve, enter the set twice, once as solid, again with symbols. If in doubt about any 
values leave zero to get defaults. 

LIST 

Gives details on data sets chosen by READ 

SCREEN 

Draw on screen, the LOCAXIS routine will ask about the axis ranges - dependant upon local installation, 
then you will get the plot ! 

FILE 

Plot to a file. (The default postscript type can at present only be changed from PLOT in the FIT routine). 

INDEX 

Usual master index of all sets in memory. 

STOP 

Returns to calling routine. 

LINEAR 

use Y against X values just as supplied. 

LOG 

use LOG(Y) against X, or use before other plot types to return to base 10 logs. 

LOGLOG 

use LOG(Y) against LOG(X) (or LN(Y) against LN(X) if first issue a LN command ). 

LN 

choose LN(Y) against X, or use before other plot types to switch to natural (base e) logarithms. 

 

GUINIER 

LOG(Y) against X**2,  uses log to base 10 unless you have previously issued a LN command.  

ZIMM 

1/Y against X**2.  

RODS 

LOG(Y*X) against X**2 for thin rods.  

SHEETS 

LOG(Y*(X**2)) against X**2.  
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USER 

choose your own transformations. These are of the form (X**i)(Y**j)LOG( (X**k)(Y**l) ) where i,j,k,l may 
be defined differently for both X and Y axes.  

FIT n m 

straight lines to be fit to sets n to m, will ask for X range for each set, where the units of X may be the 
originals, as transformed or as channel number.  Will turn "off" the fit if one is  already "on". Use LIST to 
see the gradient etc.  but after first doing a SCREEN or FILE command to see the plot. 

FIT ROUTINE -  MAIN MENU 

This menu appears after issuing FIT in the main program, it guides the set up needed before entering the interactive fit 
routine.  Normal usage involves first READing some experimental data in the main routine, then enter FIT, and work 
through options 1, 2 and 3 in this menu. 

 

1 - Read model file. 

This reads the LSQFILE of model descriptions, enter 1 when you reach the appropriate model.  

2 - Choose OBS,CALC etc. 

First asks how many data set you want to fit - normally just 1, for multi-data sets fits the model must be 
specifically designed with this in mind. 

Follow the instructions given to choose workspace numbers to be used for the OBServed data, the 
CALCulated data, BKG for experimental background (model 3), POLY polydispersity function (model 6) 
and WRK to store scaled background (models 3 and/or 4) etc. 

If in doubt enter 1 2 3 4 5 6 7 8 9 assuming your data is in workspace 1, but in theory leave a zero for a set 
not required e.g. 1 2 0 0 3 0 4 5.  Missing a space or entering zero for a workspace that is actually required 
may result in the program stopping with a subscript out of range error.  You may have to re-enter option 2 
after replacing one model by another using option 1 if extra workspaces are required or if new data with a 
different number of points has been READ in.   

For multiple data set models you may skip missing sets by entering -1 for OBS.  e.g. if the mo del has core, 
shell & drop contrasts but you only want to input and fit core and drop, then say you have 3 sets to fit, 
but enter say 1, -1 and 2 in the OBS column. 

3 - Enter fit routine 

Goes into the interactive fitting routine, see the next section.  

4 - Calculate only or set Q. 

Used instead of option 2 if there is no experimental data and you wish to do a calculation only.  

5 - Index 

As usual, helps if you have forgotten which sets are in use.  

6 - Return 

Goes back to the main control routine. 

31-                 Enters derivative test routine TESTER. 

32- Enters derivative shift and integration scheme set up routine DELSET 
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FIT ROUTINE COMMANDS - INTERACTIVE LEAST SQUARES FITTING 

This routine is reached from the FIT routine main menu, option 3, above.  A highly abbreviated command language is 
used here due to the large number of times each command is used.  To start with try out the commands P, PP, RUN, n=r 
(e.g. 1=123.45 ), n=ON (e.g. 1=ON=0.5 ) , n=OFF.  

Parameters are in array V(i), commands below may have ranges n,m where n and m are integers.  If m is not present then 
m=n by default.     Real number r does not need a decimal point. , but no E+0n allowed (yet). 

R or RUN   do one cycle of calculation. 

ST or STOP or RE or RETURN return to calling routine. 

n m   or   n,m   or   n.m  prints values of V(n) to V(m) on screen. 

n=r    sets value of V(n) to real number r 

n,m=ON   sets status of V(n) to V(m) to ON by setting partial shifts to 1.0 

n,m=ON=r   additionally resets partial shift to value r (e.g. use 0.4) which multiplies calculated  
    shifts, reduces oscillations in many cases.  

n,m=OFF   sets status of V(n) to V(m) to OFF by setting partial shifts to 0.0 

ON or OFF   changes status of whole fit regardless of partial shifts  (NOTE: OFF followed  
    by ON zeroes all the calculated shifts, before they are applied, useful if  
    something has gone wrong.) 

n,m=TIE   turns back on constraints turned off by setting partial shift to -1.0. 

P    Prints all V(i) parameter values on screen ( same as 1,99) 

PP    Prints all Parameter information to screen, including titles, constraints etc. 

PF    Print to File, lists all data and correlation matrix to MONITOR file. 

FF    Fill File writes current model and parameter values to file NEWLSQ (default  
    FOR008.DAT). 

TT    Terminal Table, lists OBS,CALC data etc. to screen. 

CC    prints least squares Correlation Coefficient matrix on screen. 

PS or S       "    data Sets in use 

PC or C       "    Constraint relations 

PN or N       "    Numerical constants, CON(1) is Marquardt lambda 

PT or T or PK or K  prints control records and titles 

Sn,m  or  Cn,m  or  Nn,m  prints a range of the above 

Cn=  or  Tn=   will invite a replacement for a constraint or title 

Pn,m=      "      "     "          "          "   parameter records to change or construct a model,  
    ( regret no insert instruction). 

Nn=r    resets constant n, e.g. N1=1.0 for Marquardt l, N4 for Dr, N5 for Rmax. 

Kn=i       "     control flag n, e.g. K2=1 for Marquardt method, K2=0 least squares, 
    K5=1 to re-initialise numerical integration schemes. 

IN  or  INDEX   usual index of data sets 

PICT    enters normal long-winded plot routine e.g. PICT, LOGLOG, STOP to switch  
    PLOT to log-log axes. 

PLOT    special plot for least squares data -see note below. 

H  or HELP   prints a shortened version of this section on screen. 

Most sensible combinations of command and range are allowed. 

Notes on PLOT command inside FIT which rather cryptically asks: 
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PLOT CONTROLS  IDEV= 0-EXIT, 1-plot, 2-save file, 3-new screen, 4-new file type 

error bars are IEB*sigma 

IPW=1 adds scaled wts 

IDEL spreads graphs apart (IDEL=2 is default)', 

ITXT = 0 table in file, 1 no table, 2-both, 3-screen only', 

IDEV,IEB,IPW,IDEL,ITXT =        (5I1)  

Note this expects a string up to 5 characters long, but giving just 11 will give IDEV=1, IEB=1 to get a plot with error bars 
on the screen.   

Answering just 2 will give IDEV=2 to save the plot previously drawn to screen in a file, default postscript.   

Answering 3 may be used to change the default screen type, or 4 to change the default hard copy file type (e.g. for 
/CGML to get a file that may be incorporated into WORD, or /GIF ).  The latter two options also prompt for new values of 
the default line-width, character size and marker size so that plots may be further customised. The hard copy file also 
contains a table of parameters.  Parameter ITXT can add this table to the screen version (e.g. if you need to make a 
screen dump) or remove it from the hardcopy by using say 11002 or 11001 respectively. 

The upper trace in the plot is the observed data  ( + markers with added error bars if IEB=1), the lower trace is the 
difference OBS-CALC, with error bars (if IEB=1).  

If you have asked to store P(Q), S(Q) or β(Q) you will be prompted to over plot these, enter 1 for solid line, 3 for dashed, 
5n where n=1 to 6 for different marker types.  S(Q) and β(Q) will be rescaled to suit the plot axes.  

 

ABSOLUTE INTENSITIES 

The "scale" parameters for each model have a physical significance when the input data is in absolute units. The 
formulae supplied should enable them to be understood.  Unfortunately is was not convenient to use an entirely 
consistent basis for all of them.  Some scale factors may not be in their most familiar form  e.g. by having a particle 
volume included or removed. This may avoiding a divide by zero possibility at R=0 or reduce parameter correlation by 
making the scale constant independent of particle size.  The polydisperse spheres distribution are all normalised to total 
volume, allowing change from one distribution to another with minimal parameter shifts and also the possibility of fixing 
the total volume fraction at a known value. 

In general for neutron small angle scattering the probability of scattering per unit solid angle per unit thickness of 

sample, in cm-1, is  

  dΣ(Q)/dΩ  = N(∆ρ)2V2P(Q)  

where there are N particles cm-3 ( typically 1016) of volume V and particle form factor P(Q) is normalised such that 
P(Q=0)=1.0.     ∆ρ is the scattering length density difference between two phases for which 

  ρ = Σnibi . ρbulk . NA / MW     where bi is a scattering length in cm. 

 e.g. for D2O  ρ =  ( 2*0.667 + 0.580)x10-12cm  x 1.1g.cm-3 x 6.02x1023mol-1 / 18g.mol-1 

       =  6.4 x 1010cm-2 

If ∆ρ is entered in units of 1010cm-2 then the scale factors given below for each model are multiplied by 1020 and they 
then generally all work without underflow or overflow occuring in the FORTRAN programs.  Molecular dimensions R are 

assumed in Å (= 10-10m = 0.1nm ) and scattering vector Q in Å-1 throughout.  

For X-ray scattering ρ may be most easily expressed in electrons per unit volume, calculated from atomic numbers and 
molar volumes.  The probability of scattering by one electron then needs to be included,  

I/Io  =  e4( 2 -2sin2(2θ) )/(m2c4)  ~  7.94x10-26cm2 at small angles.  The actual "cross section" units for X-rays should be 
carefully checked for a given instrument, one may for example have to divide by the sample-detector distance squared in 
order to get counts per unit area detector per unit volume of sample or possibly have to allow for sample thickness or 
incident beam monitor somewhere.  
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LSQFILE MODEL DESCRIPTIONS AND CALCULATION METHODS 

Each model description contains NT title records, NP parameters, NS data set information records, NC constraints and an 
array of NN numerical constants.  This section of the manual concerns the NP parameter records (type (iv) in the 
LSQFILE format later ) which tell FORTRAN routines DERIV and CALCQ in FISH how to calculate an I(Q) array.  In most 
cases the list of records are scanned in order for each point in the Q array.  For more complex cases involving, for 
example, integration over a particle size distribution, the list is first analysed by the program to decide on the method of 
computation. 

Several models are usually combined together to generate the complete calculated data I(Q).  For example we may start 
with MODEL 1 for a spherical particle, multiply by MODEL 22 for a hard sphere structure factor, add MODEL 3 for a 
background, and finish with MODEL 99 (which is always required).  Consulting the detail descriptions of each model 
below it will be seen that this takes NP = 2 + 2 +3 +1 = 8 records altogether.   If there are two separate sizes of spherical 
particle then the two records for MODEL 1 may be repeated with a different scale factor and radius for the second 
particle.  Given that there are some 45 different models, many of which can be repeated, and numerous constraints to tie 
parameters together, there are an almost infinite number of overall models possible.  Some examples are given at 
Appendix B.  The LSINP.DAT file that you may have available will only have a selection of possibilities.  You should feel 
free to edit it to form new combinations of models. 

Most sensible combinations of model are allowed, there are some limitations such as using polydisperse spheres or 
Hayter-Penfold S(Q) only once per data set to be fitted due to various initialisation checks.  ( If MODEL 88 is used to fit 
more than one data set then the initialisation is repeated each cycle before each new set.)  The program will not always 
complain if asked to do something impossible or inconsistent - the user should check that the calculated I(Q) is 
reasonable. In extreme cases it may be necessary to study the workings of the program or to write a separate program to 
generate test data. 

A model may be altered or even read in from the terminal by the Pn,m= interactive command in the FIT routine.  Most 
models require a series of records in a specified order, the control numbers LTYP(i) decide what they do, the character 
string labels are left free to the user to annotate.  The LTYP value on the first record of a group describing a model has 
particular significance.  It is often denoted LTYP(1) in the descriptions below.  For many models LTYP(1) may be 1, 11, 
21, 31 .... each of which specifies a different sub-model.  NOTE we are not referring to the first of the NP parameter 
records, but to the first record for a particular model.  In general please include as many records for each model as are 
described in the manual ( even if some are labelled "spare" or are not used by a particular sub-model).  The LTYP(i) 
numbers on records after the first in a model do not need the extra multiples of 10 (except as stated below, e.g. for 
MODEL 16, LTYP(1)=11 ), this helps to switch rapidly between sub-models by a single Pn= command. 

Several terms in the scattering cross section are actually summed simultaneously as I(Q) is generated.  These are 
combined on reaching the MODEL 99 record or some other appropriate instruction - such as to "square" or to multiply 

by an S(Q) structure factor.  Most of the complications arise when dealing with the form factor F2(Q) for polydisperse 
spheres or an anisotropic particle which then has to be multiplied by a structure factor S(Q).  Skip this next part if you are 
not concerned with such systems: 

The structure factor for polydisperse or asymmetric particles has to be corrected by a ratio β(Q) to obtain an effective 
structure factor, still assuming no preferential interactions of any one particle with another, ( J.B.Hayter & J.Penfold 
Colloid Polymer Sci. 261(1983)1022; M.Kotlarchyk & S-H Chen, J.Chem.Phys. 79(1983)2461-2469 ): 

      S'(Q) = 1 + β(Q)( S(Q) -1 ) 

In the notation used internally by FISH:  β (Q)= F(Q)2/( SUMX . P(Q) ) = |<F(Q)>|2/<|F(Q)|2> 

At each addition to the intensity the program accumulates: 

      P(Q) =  P(Q) + "scale" . F2(Q) 

      F(Q) =  F(Q) + "scale" . F(Q) 

      SUMX =  SUMX + "scale" 

      I(Q) = I(Q) + "scale" . F2(Q) 

IMPORTANT NOTE - this simplified methodology is ONLY correct for simple cases, such as polydisperse spheres or a 
system all of rods or all of ellipses.  It will not work for mixtures of different shapes, or mixtures of the same shapes but 
different contrasts.  To calculate β(Q) properly FISH would need to store separately both the number densities of each 
type of particle and their contrasts.  The averages need to distinguish a small number of particles with large contrast from 
a large number of particles with small contrast which would otherwise contribute the same to I(Q). 
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On reaching an S(Q) model both S(Q) and β(Q) are comp uted and I(Q) is multiplied by the corrected S'(Q): 

      I(Q) = I(Q) x S'(Q) 

In each model below calculation of β(Q) is mentioned where relevant.  The FIT ROUTINE - MAIN CONTROLS menu 
option 2 allows the original functions S(Q) and P(Q) to be stored in workspaces, enabling them to be added to plots or 
written out to file.  You will of course be expected to have provided workspaces for β(Q) and S'(Q) when needed. 

NEW (Nov. 2000) - the β(Q) correction to S(Q) may be turned off with the switch K8=1. 

 
WHAT FISH DOES - A SUMMARY OF THE MODELS AVAILABLE 

 

The models here are grouped in the table below by functionality rather than in their (largely historical) numerical order 

MODEL 
(LM) 

LTYP Models in FISH 

  PARTICLE FORM FACTORS 

1 1 Spherical particle - simple monodisperse solid sphere 

12 1 Guinier radius ( direct fit, useful to include flat background) 

10 or 8 1 Spherical shell, sharp step ( repeat for multiple shells ) 

10 or 8 11 Spherical shell, linear, diffuse step 

10 or 8 21 Spherical shell, decreasing exponential, to infinity 

10 or 8 31 Spherical shell, decreasing exponential, truncated 

10 or 8 41 Spherical shell, increasing exponential from R=0 

10 or 8 51 Spherical shell, increasing exponential, from previous R 

9 1 square operation, use after model 8 monodisperse shells  

18 1 Rod/disc - rigid, monodisperse, randomly oriented, core/shell, with shell at 
ends (useful for core/shell disc ) 

18 11 Rod/disc - rigid, randomly oriented, core/shell, without shell at ends 
(useful for hollow cylinder) 

18 21 & 31 Rods, as above, oriented in shear flow, Hayter & Penfold, fit to 1d 
averaged wedges of 2d data. 

18 41 & 51 Rods, as above, nematic “Maier-Saupe, DeGennes” distribution. 

18 61 & 71 Rods, as above, nematic “Maier-Saupe, DeGennes” distribution, viewed 
end-on. 

1 11 "end on" view of a monodisperse cylinder 

10 or 8 61 End-on view of mono/polydisperse fixed rod, multi-shell, sharp step 

21 1 Solid ellipsoid, use model 24 instead. 

24 1 Ellipsoid, core/shell with outer/inner radius ratio constant 

24 11 Ellipsoid, core/shell with constant thickness shell 

24 21 &31 Ellipsoids as above, but with molecular constraints for surfactant micelles. 
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  POLYDISPERSITY used with Model 10 

1 21 Polydisperse solid spheres - analytic equations for Schultz distribution 

6 11 Schultz distribution  (all model 6 use numerical integration) 

6 21 symmetric parabola  

6 31 triangular decreasing 

6 41 concave decreasing 

6 51 flat “hat” 

6 1 cubic polynomial 

6 61 alternative cubic polynomial 

6 71 stick model ( for bimodal ) 

6 81 power law between R1 & R2 

6 91 log-normal distribution 

5 1 test of a maximum entropy condition on polydispersity 

  PARTICLE STRUCTURE FACTORS 

7 1 Critical scattering “attractive” S(Q) 

19 1 Correlation hole S(Q) 

22 1 Hard sphere S(Q) 

22 11 Hard sphere S(Q) with attractive/repulsive square well 

23 1 Hayter-Penfold charged sphere S(Q) (using their routines) 

25 1 as model 23, with additional critical scattering term. 

11 21 P(Q) = Constant ( useful for fitting just S(Q) ) 

  POLYMERS 

14 1 Debye Gaussian coil - for polymers 

14 11 Polydisperse Debye Gaussian coil 

14 21 attempt at Kratky-Porod worm-like persistence chain, (14 - 71 is better) 

14 31 Benoit f-branched star Debye coil  

14 41 Dozier star polymer 

14 51 Leibler diblock copolymer 

14 61 H-shaped copolymer with deuterated tips (D.J.Read) 

14 71 Kholodenko worm – mono/polydisperse with Guinier Raxial 

14 81 Kholodenko worm – mono/polydisperse with core/shell rod 

  SURFACES, SHEETS & FRACTALS 

20 1 Q**n term  ( compare LM=11 ) 

12 11 Porod surface, with optional diffuse interface 

12 21 Porod surface, with diffuse layer of different scattering density. 

26 1 Surface fractal form factor 

13 1 Volume fractal S(Q) 
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26 11 Andrew Allen, “cement” surface fractal  

13 11 Andrew Allen “cement” volume fractal 

28 1 & 11 Polydisperse sheet, with Lorentz “waviness” 

28 21 Core/shell sheet, with Lorentz “waviness” 

28 31 Core/exponential shell sheet, with Lorentz “waviness” 

29 1 One dimensional paracrystalline stack, Kotlarchyk & Ritzau. (useful even 
for a bilayer ) 

29 11 Wenig & Bramer, flat, 3 phase paracrystal, allows gaps between stacks to 
have different scattering densities 

  GENERIC GELS & 2 PHASE MODELS 

16 1 &11 Teubner & Strey 2 phase “peak” 

17 11 Debye random 2 phase 

27 1 Gels - Lorentzian plus Debye-Beuche 

  PEAK FITTING 

27 21 Gaussian peak 

27 71 Stretched Gaussian peak ( as used for LOQ resolution) 

27 31 Voigt peak ( Gaussian convoluted with Lorentzian) 

27 51 Gaussian peak, going to exponential, with continuous first derivative. 

27 61 Ikeda-Carpenter equation for neutron moderator time distributions 

27 81 Gaussian convoluted by exponential 

  QUASIELASTIC 

4 11 “Vanadium” resolution function for neutron quasielastic scattering 

11 31 Delta function, as alternative to LM=4, LTYP=11 for quasielastic data. 

27 11 Lorentzian, for quasielastic neutrons 

  GENERAL 

2 1 does nothing - allows parameters to be introduced into constraints 

3 11 Simple flat background ( note background is stored separately and is not 
resolution smeared) 

3 1 Quadratic background 

11 1 General polynomial to order 7 

4 1 Scaled subtraction of a “background” data set. 

11 21 P(Q) = Constant ( useful for fitting just S(Q) ) 

15 21 &31 Resolution smearing by a constant width Gaussian 

15 41 Resolution smearing by input curve 

15 51,61 & 71 Resolution smearing, estimated for LOQ at ISIS 

5 -n Predicate observation - allows weighting of parameters towards “known” 
values, see manual. 

88 0 or n Allows multiple data sets, following lines are for all (0) or just set n. 

99 1 ALWAYS needed to end the calculation 
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MODEL 1 

Solid particles, analytic equations for sphere, "end view" of cylinder, and Schulz polydisperse spheres: 

LTYP = 1, Small angle scatter from a spherical particle of radius r. Each size of particle in a mixture of sizes 
requires two records:  

LTYP=1  A scale = I(Q=0)= 10-24N(∆ρ)2V2 

LTYP=2  r radius 

where N particles.cm-3 have volume V=4πR3/3  Å3 and scattering length density difference is in cm-2 (see 
above).   

Together these do   F = 3*[(sin(Qr)-Qrcos(Qr))/(Qr)3 ] 

P(Q) = P(Q) + A*F2 

F(Q)=F(Q) + A*F     ( note this has A not A1/2 see IMPORTANT NOTE above.) 

"End on" view of a cylinder of radius r  (compare model 8, LTYP = 61)  

LTYP=11 A scale  

LTYP=12 r radius 

Analytic equations for Schultz distribution, from M.Kotlarchyk & S-H Chen, J.Chem.Phys. 79(1983)2461-2469 (following 
others), after rearrangement to avoid overflows with small σ, and re-scaling the Schultz to per unit volume 
(similar to Model 6 below) so that "scale" varies little with changes in σ/R and is proportional to total 
dispersed volume (integrated over the polydispersity).  Note volume mean radius (needed for φ = NV) is 
given by <R3> = (1+σ/R)(1+2σ/R)R3.  e.g. for number mean R = 50Å and σ/R = 0.2, volume mean <R3>1/3 = 
51.97 Å,  i.e. larger due to the asymmetric size distribution. This makes a considerable difference to the 
scaling due to the dependence of I(Q=0) on ~ V2.  F(Q) is computed as above for inclusion in a β(Q) 
correction done by a following S(Q).  Note this model will not store polydispersity separately as done for 
the numerical integration in Model 6.  The main purpose of this model is to add "extra" scattering, such as 
a "magnetic core", to other more complex models.  

LTYP=21 A scale = 10-24φ(∆ρ)2   where ∆ρ is in units of cm-2 and φ is total volume fraction, summed over 
   the polydispersity. 
LTYP=22 R mean radius 
LTYP=23 σ/R polydispersity  
 
MODEL 2 

Does nothing !  The parameter entered here is normally used in constraints, e.g. for a shell thickness in 
polydisperse spheres. 

MODEL 3 

A quadratic (e.g. for a background) is ADDED into the calculated data set (at model 99).  This is also 
added into workspace WRK, as defined in option 2 of "fit routine main controls"  (see model 11 for a 
general polynomial fit not stored in WRK). Note the addition is done AFTER any structure factor 
multiplication, squaring operations or resolution smearing of I(Q) regardless of where the records appear in 
the file.  ( NOTE the PLOT command gives an option to subtract WRK(Q) from both OBS and CALC 
before producing the plot.) 

LTYP=1  A  WRK(Q)=WRK(Q)+ A + B*Q + C*Q**2 

            2  B 

            3  C 

LTYP=11 A  short version for a flat background, saving two records,  WRK(Q)=WRK(Q)+ A  
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MODEL 4 

Add an experimental or otherwise calculated background to the calculated set. This "background" is input 
as set BKG in the FIT control section, the scaled data is added into set WRK ( together with any model 3 
background) so may be subtracted in plots or investigated separately. Note the addition is done AFTER 
any structure factor, squaring or smearing on I(Q) regardless of where the records appear in the deck.  

LTYP=1  A  scale parameter (which may be refined) WRK(Q)=WRK(Q)+ A*data(Q,BKG) 

The LTYP = 11,12 model uses data stored in set 9 ( hardwired at present, see IV= 9 lines in code, and 
MODEL 15, LTYP = 41 ) to add an "elastic line" for quasi-elastic neutron data.  The elastic line, being itself 
the resolution function does not need to be smeared, so is put into the "background" here.  At I(Q=E) we 
have I(E) = I(E) + A*CUBIC( RESOL( E + δ) ) where function CUBIC is a Lagrange cubic interpolation 
through a group of the nearest 4 points, that here returns zero if E+δ is outside the range of the data stored 
in set 9, ( as defined by NC3(9) to NC4(9) ).  i.e. the supplied resolution data must be reasonably smooth, in 
similar bins to the data being fit, and cover positive and negative Q values, though it may cover less range 
than the actual data. 

 

LTYP=11 A  scale parameter (which may be refined) - special model for vanadium resolution function. 

           12 δ shift δ (which may be refined) 

 

MODEL 5 

Used to enter "predicate observations", these are NOT part of the computation of I(Q) and are simply extra 
items of experimental data. The idea is simple, one includes a guessed value of a parameter as a data item 
with a weight based on its expected uncertainty.  This is more flexible than fixing a parameter at some 
arbitrary value as the value may still move in the least squares fit. The method has proven very useful for 
underdetermined molecular structures in gas electron diffraction and microwave spectroscopy where some 
bond lengths are well known to always fall within certain tolerances.( The primary reference is L.S.Bartell, 
D.J.Romenesko and T.C.Wong in "Molecular Structure by Diffraction Methods" eds. GA.Sim and 
L.E.Sutton, (Specialist Periodical Reports), The Chemical Society, London, Vol.3,(1975), Part I, Chapter 4.)  

NOTE- control flag IP=K3 on record (ii) decides whether predicate observations are to be included in a fit 
regardless of whether these entries have non-zero weights. 

Two records are needed for each predicate observation:  

Either (i) simple type :  

LTYP= -J  guessed value for parameter J in the model 

 -J  weight for this observation 

Or (ii) a special type, for use with polydisperse small angle scatter : 

LTYP=1  Guess for V0 

           2   Weight "  "  

           3   Guess for σ(r)/rbar 

           4   Weight "   "    "  

           5   Guess for entropy term ( a big number) 

           6   Weight for     "      "     

Entropy here is an experimental use of the maximum entropy method, to help with polydisperse problems. 

  entropy = -∫  P(r)loge(P(r)/B) dr 

  where estimator B is CON(7)=N7 and P(r) integrates to unity. 
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MODEL 6 

Used alone this allows for polydisperse solid spherical particles, in combination with MODEL 10 
polydisperse core/shell or multilayer particles are calculated..  A number of choices of particle size 
distribution are allowed, decided upon by the value of LTYP(1) on the first of at least four records 
required.  Some experimentation is required to find a model that will converge, the small and large particle 
limits correspond to extreme high and low Q data respectively which are usually poorly defined.  Predicate 
observations (see model 5) with high weights may help to restrain polynomial coefficients as will 
application of small partial shifts.  It is recommended to refine a flat background addition to I(Q), checking 
that its value remains sensible compared to expected systematic errors or incoherent background.  

If the particle size distribution is P(R) then, unless otherwise specified, R is automatically restricted to a 
range where P(R)>0 and R< Rmax where Rmax is stored as CON(5), which is N5 in the interactive routine.  
The step size in R is CON(4) or N4, which is used: 
(a) during an initial search to check Rmin and/or Rmax values 
(b) when storing P(R) in set POL, which may later be written out or plotted. (Note that this is despite the 
fact that the numerical integrals may be performed by a quadrature method that does not actually use this 
array.) 
(c) as the R interval for Simpson's rule integrations. 

REMEMBER TO SET R SEARCH STEP SIZE and Rmax!! ( e.g. do  N4=2.0  N5=1000. ) 

Moments and averages of P(r) are calculated numerically, you will be prompted for a choice of numerical 
integration method. on starting a calculation (or do K5 = 1 to be prompted again).  Integration schemes 
available are 4,10,48 or 64 point Gaussian quadrature, two more general 10 point quadratures ( see 
C.G.Harris & W.A.B.Evans International J. Computer Math. B6(1977)219-222) and finally Simpson's rule.  In 
general the higher number methods produce the best results, and with modern computers are not unduly 
slow.  A Gaussian quadrature is like Simpson's rule except that the points used are not equally spaced.  For 
functions that are well described by a polynomial a quadrature method is more efficient.  See Appendix F if 
you are not familiar with numerical integration methods. 

Until Feb 2002 the values of radii in MODEL 10 were left at the values last used by the numerical 
integration for MODEL 6, i.e. the maximum values included, so to see the "mean" you had to look at 
MODEL 6, not the MODEL 10 line with PSHIFT = -2.0.  Since FEB 2002 the constraints routines are called 
one more time after the calculations, with R = Rbar, so that MODEL 10 radii are now printed out at their 
mean values. 

Remember also to set CON(7) for entropy estimator B if it is needed.  When using Model 6 some 
informative print out will appear which includes the numerically computed values of average radius Rbar, 
σ(R)/Rbar etc.; check that these are what you expect !  ( if not examine the parameter values and check N5 
& N4 ). 

Model 6 may at present only be used once in the whole fit (you could add a previously calculated 
polydisperse set using MODEL 4 or for solid particles use MODEL 1 - LTYP=21). 

On the first record of each sub-model below  "scale"  = 10-24φ(∆ρ)2  where ∆ρ is scattering length density 

difference in cm-2.  φ = volume fraction = Σ NiVi,  i.e. the polydispersity function is normalised to unit 

volume.  If model 6 is combined with model 10 and ∆ρ for model 10 is entered in units of  

10-10cm-2 then the model 6 "scale"  = 10-4φ 

LTYP=11 Scale     Modified Schultz distribution 

            12 Rbar mean radius 

            13 R1  offset, usually zero !             P(r) = [(Z+1)/ (Rbar-R1)]Z+1rZexp{-(Z+1)/( (Rbar-R1).r)}/Γ(Z+1) 

            14 σ/(Rbar-R1)   where r = R -R1   and   σ = (Rbar-R1)/(Z+1)½ 

At σ goes to zero the Schultz distribution tends to a delta function, at small σ a Gaussian, and for large σ 
becomes skewed to larger sizes similar to a log-normal.   The main advantage of the Schultz form is in 
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having an analytic solution for F(Q) - see Kotlarchyk & Chen mentioned above, though it is actually 
simpler in practise to perform numerical calculations as here.  This is still tricky as Z can be large causing 
underflow and overflow problems. The calculation is made stable by taking logarithms and by using an 
asymptotic form of the gamma function Γ(Z+1) at large Z.  The model tends not to converge unless the 
starting parameters are very close to the final answer.  NOTE the Schultz distribution P(r) is significant 
down to r=0 when σ is large.  R1 optionally allows the whole distribution to be shifted, so P(r)=0 for r < R1.  

LTYP=91 Scale     Log-normal distribution 

            92 Rbar  mean radius 

            93 R1     P(r) = exp{ -0.5( log(r) - µ )/σ)2 }/ (σr (2π)½ ) 

            94 σ/(Rbar-R1)    where r = R -R1   and   (Rbar-R1) = exp{µ + 0.5*σ2} 

This also produces a size distribution skewed to higher r, the median is exp{µ}.  Some physical 
significance may be attributed given a system which is randomly subdivided into smaller pieces. The 
model here is characterised by Rbar and σ/Rbar, with an optional shift of the whole distribution by R1.  

The definition of a "log-normal" P(r) seems to vary a little from one reference to another. 

The next four model types allow the r range to be directly adjusted ( see constraints for how to tie R1 and (R2-R1) to fit 
Rmid and λ) :   

LTYP=21   Symmetric parabola  P(r) = 4A(r-R1)(r-R2)/(R1-R2)**2 

LTYP=31   Triangular decreasing  P(r) = A(R2-r)/(R2-R1) 

LTYP=41   Concave decreasing parabola P(r) = A(R2-r)**2/(R2-R1) 

LTYP=51   Constant   P(r) = A for R1 =< r =< R2 

These four simple functions for P(r) all require four records: 

LTYP=21 or 31 or 41 or 51 Scale 

            22 etc.   R2-R1 

            23   R1 

            24   spare, but must be included 

Several other shapes or definitions of polydisperse particle distributions are available: 

LTYP=1  A    Polynomial for polydispersity 

            2  B    P(r) = A +B*r +C*r**2 +D*r**3 

            3  C 

            4  D 

 

LTYP=61 A    Modified polynomial for polydispersity 

            62 B    P(r)=A +ABr +ABCr**2 +ABCDr**3 

            63 C    scaling is easier but terms stop after a zero coefficient. 

            64 D 

 

LTYP=71 Scale   "Stick model" or "free form" polydispersity 

           72 C1   P(r) is interpolated by a 4 point cubic polynomial 

           73 R1   through sticks of height Cn at position Rn.  At least 

           72 C2   fours sticks are required with r values increasing  

           73 R2   but not necessarily at equal intervals.  This copes 
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           72 C3   with a "bimodal" particle size dis tribution. 

           73 R3   N.B. P(r) is continuous, but is set zero when the cubic interpolation is less 

           72 C4   than zero.  Negative values of Cn affect shape of adjacent positive regions 

           73 R4   so leave them in !  May need a dozen or more sticks with the first and 

           72 etc.   last set to zero.  Start with the other Ci equal. Scale parameter is as per  

     usual, P(r) is normalised to give correct volume as per Schultz etc. 

 

LTYP=81    Scale   polydispersity P(r) = ( abs(r -RB) )|n| 

             2 R2-R1    where if n<0 RB = R2 + ∆R 

             3 R1                   n>0 RB = R1 

             4 n    and  ∆R = N4 = CON(4) 

This is the same as LTYP=41 if n=-2, but gives flexibility to change the degree of asymmetry in the size distribution.   

 

MODEL 7 

Critical scattering structure factor- this MULTIPLIES all previously summed terms in I(Q). Preceding 
derivatives of I(Q) are also appropriately treated.  (For a similar form factor see MODEL 27.) 

LTYP=1  κ - kappa    S(Q)= 1 + κ/( 1+ ζ2Q2) 

            2  ζ - zeta, correlation length   I(Q) = I(Q)*S'(Q) 

 

MODEL 8 

Monodisperse spherical particle with "multi-shell" contrast profile. Compare MODEL 1 where |F(Q,R)|2 is 
summed, here we sum F(Q) and then use MODEL 9 to square to get I(Q). ( This model must usually be first 
in the deck and must have all its pairs of ∆ρ and R records adjacent. Consult the FORTRAN code if you 
really need to use it elsewhere, as it may not do what you want.)  See MODEL 10 for more details of 
LTYP=11,21,31,41,51 or 71, which are complex, as they are a THREE parameter model involving the 
preceding radius also ! 

ALSO, LTYP = 6, monodisperse core/shell rods seen “end - on” ( compare model 18). 

LTYP=1     ∆ρ - contrast  ( F(Q) as per (10-2) below ) 

             2 a  - radius 

LTYP=11   ∆ρ - contrast “fuzzy” shell, linearly increasing or decreasing, from previous radius. 

             2 b  - radius 

LTYP=21   ∆ρ - exponential shell, downhill to infinity, from previous radius a 

             2 a + 3.5L   radius defining exponential decay. 

LTYP=31   ∆ρ - exponential shell, downhill, cut at a + 3.5L, from previous radius a 

             2 a + 3.5L   radius defining exponential decay and cut off. 

LTYP=41   ∆ρ - exponential shell, uphill, from  radius zero. 

             2 3.5L   defining exponent L 

LTYP=51   ∆ρ - exponential shell, uphill, cut at (a - 3.5L), from previous radius (a - 3.5L) 

             2 a   radius defining exponent L. 

LTYP=61 ∆ρ - contrast, end-on view of a rod ( not to be combined with spherical shells ! ) 
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             2 R  - radius 

For an “end - on” view of a rod we have in the equations of model 18, θ = φ = π/2, so cos(γ) = 0, sin(γ) = 1. 

so here we do       F Q F Q V J QR
QR

( ) ( ) ( ) ( )= + ∆ρ 2 1   where the latter term tends to unity as Q goes to zero. 

Note that though the shape of the scattering does not depend on rod length L, it still affects the absolute intensity 
through V = πR2L.  Here we use L = 1, so the “scale” for model 9 is multiplied by L2.  For a general discussion, including 
the interparticle structure factor for packed rods see: G.Oster & D.P.Riley, Acta.Cryst. 5(1952)272-276. 

LTYP=71 ∆ρ - Gaussian shell centred at (a+b)/2 - see notes in model 10 

             2 b  - radius 

 

MODEL 9 

Square operation, used immediately after MODEL 8.  

LTYP=1  scale      =    N x10-48   I(Q) = scale*F(Q)2 

    where there are N particles cm-3 and ∆ρ in model 8 is in cm-2 

MODEL 10 

"Multi-shell" contrast for use with polydispersity MODEL 6, parameters are the same as for MODEL 8, a 
pair of records for each step in the contrast profile.   

NOTE- the square operation is handled automatically so, unlike MODEL 8, a MODEL 9 record is NOT 
required.  You will be prompted for a choice of a quadrature method of integration ( or do K5 = -11). 

NOTE- the program needs to know which radius in the contrast is polydisperse. This is done by setting 
one partial shift PS(j) to -2.0 where j corresponds to an R record.  ( Do not turn this ONor OFF ! )  Other 
radii in the profile may be kept fixed or may be constrained in the usual way, most often tied to the PS(j)=-2 
parameter.  

NOTE- until Feb 2002 the values of radii in MODEL 10 were left at the values last used by the numerical 
integration for MODEL 6, i.e. the maximum values included, so to see the "mean" you had to look at 
MODEL 6, not the MODEL 10 line with PSHIFT = -2.0.  Since FEB 2002 the constraints routines are called 
one more time after the calculations, with R = Rbar, so that MODEL 10 radii are now printed out at their 
mean values. 

NOTE that the LTYP=11,21,31,41,51& 71 cases are THREE parameter functions, depending on two radii a 
and b and a contrast step. The least squares derivative calculations modify that already calculated for the 
“previous” radius.  In equations below  c = (b-a)  An example below shows how to use such models. 

LTYP=1   ∆ρ contrast  ( see (10-2) below ) 

            2  a  - radius   

LTYP=11   ∆ρ - contrast “fuzzy” shell, linearly increasing or decreasing, from previous radius a. 

            2  b  - radius 

  ( shell volume, increasing is πc(6a2 + 8ac + 3c2)/3,  decreasing is πc(6a2 + 4ac + c2)/3 ) 

LTYP=21   ∆ρ - exponential shell, downhill to infinity, from previous radius a [ALL EXPONENTIAL  SHELLS  

            2  b = a+3.5L   radius defining exponential decay.                                NEED CORRECTION ! ] 

LTYP=31   ∆ρ - exponential shell, downhill, cut at a+3.5L, from previous radius a 

            2  b = a+3.5L   radius defining exponential decay and cut off. 

  ( shell volume is 4πL{a2 + 2aL + 2L2 -exp(-c/L)(b2 + 2bL + 2L2 )}    ) 

LTYP=41   ∆ρ - exponential shell, uphill, from  radius zero. 



 21 

            2  3.5L   defining exponent L 

LTYP=51   ∆ρ - exponential shell, uphill, cut at (a - 3.5L), from previous radius b = (a - 3.5L) 

            2  a   radius defining exponent L. ( Beware a and b are now opposite way around ! ) 

  ( shell volume is 4πL{a2 - 2aL + 2L2 -exp(-c/L)(b2 - 2bL + 2L2 )}    ) 

LTYP=61 ∆ρ - contrast, end-on view of a rod ( not to be combined with spherical shells ! - see notes in model 8 ) 

             2 R  - radius 

LTYP=71 ∆ρ - Gaussian shell centred at (a+b)/2, with same material as rectangular shell from a to b. 

             2 b  - radius 

The single particle form factor P(Q) is F(Q)2 where for a spherically symmetric particle of scattering length density ρ(r) at 
radius r we have:    

F Q r r
Q r

Q r
r( ) ( )

s i n ( )
=

∞

∫4 2

0
π ρ d

  (10-1) 

When ρ(r) takes a complex form, as for LTYP= 11,21,...51, this Fourier integral may be split into a sum of terms for each 
step or feature. For a vertical step of upwards of ∆ρ at radius a, as in the sharp interface model, LTYP=1 

   F(Q) = -4π.∆ρ(sin(Qa) - Qa.cos(Qa) )/ Q3    (10-2) 

If ρ(r) increases linearly from zero to ∆ρ between radii a and b, for LTYP=11, then: 

 F(Q) = 4π.∆ρ{ 2(cos(Qa) - cos(Qb) ) + Qa.sin(Qa) - Qb.sin(Qb) } / ( Q4(b - a) )  (10-3) 

To model a more diffuse boundary Gradzielski et al ( M.Gradzielski, D.Langevin,L.Magid, R.Strey,. 
J.Phys.Chem.99(1995)13232-13238 ) used a symmetrical Gaussian distribution for ρ(r), which after approximating the lower 
integration limit of (10-1) to -∞ gives an analytic equation for F(Q),  used for LTYP=71, 

 F(Q) = 4π.∆ρ.(b-a)exp{-Q2t2/2}( R0sin(QR0) + Qt2cos(QR0) )/Q 

where R0 = (a + b)/2 and the Gaussian ρ(r) = ∆ρexp{-(r-Ro)
2/2t2} is normalised to have the same amount of material as the 

spherical shell between a and b by 
ππ 2
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= .  The approximate t is the exact value for a 

flat sheet, which FISH uses as a starting value and iterates twice ( the first time with 2t2 in the denominator which speeds 
convergence). The approximate t is assumed in analytic derivatives. Unfortunately the Gaussian shell is only realistic for 
a well matched “shell” contrast, and, since the integral for a “half Gaussian” appears not to be analytic, may not easily be 
applied to “core” or “droplet” contrasts. 

An alternative form, useful particularly in the polymer field, would be for ρ(r) to decrease exponentially (“downhill”) from 
a value ∆ρ at r = a to zero at infinity as ρ(r) = ∆ρ.exp{-(r-a)/L} for r ≥ a, for which LTYP =21 uses: 
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π ρ∆ (10-4) 

where constant h = +1. [THIS IS WRONG & NEEDS CORRECTING IN FISH – RKH 03/2004 ] 

For LTYP=31 the exponential is truncated by a small vertical step to zero at R = (a + 3.5L), by automatically adding a term 
(10-2) for the step, at the same time subtracting the remainder of the exponential from R = ( a + 3.5L) to infinity. 

If the exponential in ρ(r) instead increases (“uphill”) from zero at minus infinity to ∆ρ at r = a according to ρ(r) = ∆ρ.exp{-
(a-r)/L}, then h = -1 in equation (10-4).  Again by adding and subtracting appropriate terms it is possible to truncate ρ(r) 
at R = 0 for LTYP=41 or R = ( a - 3.5L) > 0 for LTYP=51 

Equations (10-2) to (10-4) were derived by RKH ( the latter two for the first time ? ), and their results were extensively 
checked by numerical Fourier transforms of trial profiles, against both FISH output and a separate program which 
expressed the equations in different ways.  Thus they are believed to be correct ! 

NOTE the SANS for a parabolic profile ( as for a “polymer brush” on a flat surface) at a spherical interface appears not to 
have an analytic solution, but may be approximated by a series of linear segments of LTYP =11 with appropriate 
constraints.  For the brush case ρ(r) = ( 1 - (r-a)/c )1/2 and the exact shell volume is 8πc(35a2 + 28ac + 8c2)/105, whilst for a 
concave profile ρ(r) = ((r-a)/c -1)2

 and the shell volume is 4πc(10a2 + 5ac + c2)/30. 
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NOTE To generate a desired contrast profile it may be necessary to use some “dummy” shells.  The example below is for 
a linear ramp up, a flat top, and a linear ramp down, as might be used for a hollow shell, vesicle, structure: 

 T  1 P 15 S  1 C  4 N  5 
 W  1 K  0 IP 0 MS 1 IY 1   -6   -6   11    0   61   10    4 
  SCHULTZ POLYDISPERSE 3 SHELL SPHERE LINEAR/FLAT/LINEAR - FOR VESICLES          
  1 10  1 rh2-rh1=0    0.000000E+00    0.000E+00   0.0  0.00E+00 
  2 10  2 R1           3.100000E+02    0.000E+00  -1.0  0.00E+00 
  3 10 11 rh2-rh3      6.000000E+00    0.000E+00   0.0  0.00E+00 
  4 10  2 R2           3.250000E+02    0.000E+00  -1.0  0.00E+00 
  5 10  1 rh3-rh4=0    0.000000E+00    0.000E+00   0.0  0.00E+00 
  6 10  2 R3           3.500000E+02    0.000E+00  -2.0  0.00E+00 
  7 10 11 rh4-rh5     -6.000000E+00    0.000E+00  -1.0  0.00E+00 
  8 10  2 R4           3.650000E+02    0.000E+00  -1.0  0.00E+00 
  9  6 11 SCHULTZ SCA  5.000000E-06    2.283E-07   1.0  1.36E-08 
 10  6 12 RBAR         3.000000E+02    9.083E+00   1.0  7.94E-01 
 11  6 13 R0-SHIFT     0.000000E+00    0.000E+00   0.0  0.00E+00 
 12  6 14 SIG/(RB-R0)  2.000000E-01    0.000E+00   0.0  0.00E+00 
 13  8  2 head         1.500000E+01    0.000E+00   0.0  0.00E+00 
 14  8  2 tail         2.500000E+01    1.244E+00   1.0  2.08E-02 
 15 99  1 FINISH       1.000000E+00    0.000E+00   0.0  0.00E+00 
   1  1 c18e12e17    CALC 2 BKG 0 POL 3  SSE= 8.816E+03 
  11   2   6  13  14 
   1.00000  -1.00000  -1.00000   0.00000  (R1 = R3 - head - tail ) 
  11   4   6  14  14( 
   1.00000  -1.00000   0.00000   0.00000  ( R2 = R3 - tail ) 
  11   8   6  13  13 
   1.00000   1.00000   0.00000   0.00000  ( R4 = R3 + head ) 
  11   7   3   1   1 
  -1.00000   0.00000   0.00000   0.00000  (  (rh4-rh5) = - (rh2-rh1) ) 
 1.000E+00 3.282E-06 2.000E-01 4.000E+00 2.000E+03 
 

The shells defined by parameters 1& 2 and 5 & 6, with zero contrast, are needed for the following LTYP=11 shells.  The 
polydisperse radius is parameter 6, marked by the -2.0 in the partial shifts column.  The other radii are all tied to it by 
constraints. 

 

MODEL 11 

General polynomial fit (see also MODEL 20) or generate a constant in P(Q), or a "delta" function at the 
origin. 

LTYP=1  A         I(Q)=  I(Q) + A + B*Q + C*Q**2 + D*Q**4 ... + G*Q**7 

            2  B 

            3  C 

          etc...... 

            8  G 

LTYP=21 A I(Q)= A  one record only version, to generate P(Q)=constant, is useful before a  
     multiplicative S(Q) which needs to be refined or tested.   

LTYP=31 A 

           32 T  tolerance ( may not be refined )   Defines a "delta function" at Q = 0 intended for  

inelastic data, (but is replaced by MODEL 4, LTYP = 11),  does  I(Q) = I(Q) + A/(2T)  when ABS(Q) ≤ 
ABS(T), so if central Q values are at -∆ and +∆ where ∆ is a little less than T the area of the delta function 
is 1.0 

MODEL 12 
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Guinier radius (LTYP=1) or diffuse Porod interface (LTYP=11) or diffuse Porod interface with a diffuse 
coating of thickness H. 

LTYP = 1   A scale (analogous to model 1)   I(Q)= I(Q) + A* exp( -Q2R2/3.0 ) 

           = 2 R Guinier radius 

LTYP = 11 K= 2πS   Porod surface with diffuse interface.  Note an infinite flat sharp interface  

convoluted with a Gaussian has a sigmoidal profile which scatters exactly Q2 times this.  The inclusion of a 
Lorentz 1/Q2 term for a randomly oriented flat surface involves some approximations for real surfaces, 
which require further investigation ( RKH 2/4/98). 

           = 12 σ     I(Q)= I(Q) + Kexp( -Q2σ2)/Q4 

LTYP = 21 K= 2πS diffuse Porod surface with separate surface layer of different scattering length density. 

          = 22 ∆1 Scattering length density difference  (substrate - solvent )   

          = 23 σ1 diffuseness of substrate. 

          = 24 ∆2 Scattering length density difference  (layer - solvent )   

          = 25 H thickness of layer  

          = 23 σ2 additional diffuseness of layer.  ( Note that σ2 is convoluted with σ1 in the ∆2
2 term.) 

The scattering equation was derived ( RKH 19/3/98) from the shell/core/shell flat sheet case ( see MODEL 28, LTYP=21 ) 
convoluted with Gaussian functions, by letting the core thickness tend to infinity.  FISH uses analytic derivatives.  ( 
Some further investigation of the validity of the Lorentz 1/Q2 is required.) 
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MODEL 13 

Structure factor for volume fractals, in Teixeira formulation J.Appl.Cryst. 21(88)781-785, where 
"normalisation" R**-d  matches Kjems and Sinha's C/(d-1).  The Q**-d dependence is for the range  
1/ζ < Q < 1/R.  Compare MODEL 26 the form factor for surface fractals. 

S(Q)= 1 + (QR)-d dΓ(d-1) (1 + (Qζ)-2 )(1-d)/2sin{(d-1)atan(Qζ)} 

I(Q) = I(Q)*S'(Q) 

LTYP=1  d - fractal dimension, 2 to 3 

           2  ζ - aggregate size 

           3  R  particle radius (for normalisation assuming aggregates of spheres). 

 

LTYP(1)=11 adds 4 extra records for Andrew Allen’s cements etc. model, see  A.J.Allen, J.Appl.Cryst. 24(91)624-634 and 
Harwell Report MPD/NBS/361 (but beware typos. in the equations).  NOTE this is then a structure factor * form factor ! 

         14  ∆ρ (in 1.0e10cm**-2 ) 

         15  f - overall vol fraction of fractal phase 

         16  fL - local volume fraction 

         17  S - rough (max) surface area ( cm* -1) 

MODEL 14 

Gaussian coil for monodisperse (LTYP(1)=1) or polydisperse (LTYP(1)=11) polymers ( e.g. for partially 
deuterated polystyrene), for a wormlike chain (LTYP=21, or better LTYP=71 & 81 ), for a Star polymer 
according to Benoit (LTYP=31) or Dozier (LTYP=41).  Generally no calc of β(Q) except for LTYP = 71 & 81. 
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LTYP=1  I(Q=0) =Io  Debye Gaussian coil  I(Q) = I(Q) + Io.2(y-1+exp(-y) )/y2 

            2  Rg radius of gyration    where y = (QRg)2 

For a dilute solution  I0 = φV(∆ρ)2  where V is the volume of polymer in one scattering object ( the coil) and 
∆ρ is in cm-2.   φ = c/d  and  V = M / ( d.NA), where c is the concentration of polymer ( g.cm-3), of molecular 
weight M ( g.mol-1) and density  d ( g.cm-3 ). 

For a blend of volume fraction X of d- and h- polymers Io = X(1-X).V(∆ρ)2.  Corrections are possible for 

differences in density and molecular weight of the d- and h- polymers, see e.g. G.D.Wignall & F.S.Bates, 
J.Appl.Cryst. 20(1987)28-40  and references there in. 

LTYP=11 Io Polydisperse Gaussian coil I(Q)= I(Q) + Io.2( y - 1 + (1 + Uy)-1/U )/((1 + U)y2) 

            12 Rg  radius of gyration   where y = (QRg)2/(1 + 2U) 

            13 U  index of polydispersity, assuming Schultz distribution,  U = 1 - MW/MN 

Note the program takes |U| to avoid numerical problems and if |U|<0.01 reverts to the monodisperse model. 

LTYP=21 I(Q=0)  exactly as for a Gaussian coil.  Worm- like chain 

           22 n  gives total chain length L = nl 

           23 l  statistical chain element length 

           24 Rax  cross sectional radius of gyration of the chain, assuming a Gaussian scattering density 
   distribution. 

           25 U  index of polydispersity, as above. 

This is based on the Kratky-Porod worm-like persistence chain model of M.Ragnetti & R.C.Oberthur, 
Colloid & Polymer Sci. 264(1986)32-45.  See also R.G.Kirste & R.C.Oberthur in Glatter & Kratky "Small 
Angle X-ray Scattering", 1982,  p407-411.  The latter reference should be studied carefully before using 
this model.  Note that separate equations are used in different parts of the Q range, there may be 
"transitions" visible at some of the junctions, which are not smoothed or blended here. 

For Ql < 3.1 the Debye Gaussian coil is modified by additional terms to become the form factor of a worm-

like chain of Sharp & Bloomfield.  The radius of gyration of the coil is given by RG
2 = nl2/6.  This part is 

reported accurate to better than 1% for n>10. The higher Q parts are valid only for an infinite chain, say 
n>50 (see Fig. 8 in the Glatter & Kratky article) and rely on calculations of Des Cloiseaux for an infinite thin 
chain.  For Ql < 9.4 an analytical approximation of numerical results is used.  For Ql < 13.4 and Ql >13.4 
further analytical approximations to a damped oscillation proposed by Des Cloiseaux are used.  ( These 
latter two equations had incorrect Q dependencies, so were corrected - confirmation of this else where has 
not yet been found.)   

All four terms are multiplied by exp( -Rax2Q2/2) to allow for the thickness of the chain (note the 1/Q for a 
long rod is already there), which is assumed to have a Gaussian scattering density profile (see Glatter & 
Kratky p415, eqn 53).  Polydispersity U is approximately corrected for by multiplying by the ratio of the 
polydisperse to mondisperse Gaussian coils given above. 

When LTYP=31 we have the Benoit extension of the Debye equation for an f-branched star polymer. The 
theory assumes that the monomer-monomer distribution is independent of whether the chain joining them 
passes through a branch point.  For further discussion and a case of star branched PE in the melt, see 
J.C.Horton, G.L.Squires, A.T.Boothroyd, L.J.Fetters, A.R.Rennie, C.J.Glinka & R.A.Robinson, 
Macromolecules 22(1989)681-686; the original reference is H.Benoit, J.Polym.Sci. 11(1953)507 

LTYP=31 I(Q=0) =Io    I(Q) = I(Q) + Io.2(y-1+exp(-y) + (f-1)(1-exp(-y))2/2 )/fy2 

            32 Rg radius of gyration    where y = f(QRg)2/(3f-2) 

            33 f the number of branches.   Note when f=1 the Debye coil equation is obtained. 
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At small Q, the Guinier term is identical to a Gaussian coil of radius Rg   (i.e. independent of  f ) and so 

I(Q=0) is the same as LTYP=1 with M = f.Marm where Marm is the molecular weight of a single arm. 

The Benoit equation does not work for some (or all ?) star polymers in solution where strong interparticle 
and osmotic effects occur even well below c*.  Dozier et.al. propose a "functional description" which 
combines a Guiner radius of the whole star at low Q with a power law "mass correlation" function within 
the star ( note similarities with volume fractal in MODEL 13).  A number of scaling relationships should 
exist between the various molecular parameters, consult - W.D.Dozier, J.S.Huang & L.J.Fetters, 
Macromolecules 24(1991)2810-2814; also D.Richter, O.Jucknischke, L.Willner, L.J.Fetters, M.Lin, 
J.S.Huang, J.Roovers, C.Toporovski & L.L.Zhou, J.de Physique IV, Colloque C8, 3(1993)1-12.   

LTYP=41 Nf  - scale 

            42 Rg - radius of gyration 

            43 (α / Nf ) - relative scale of fractal term 

            44 ξ - exponential damping length in mass fractal 

            45 ν = 1/ (µ + 1 ) - Flory exponent, 3/5 in good solvent, 1/2 in theta solvent ( i.e. µ = 2/3 to 1 ) 
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Note this model has NOT been programmed with the usual attention to overflow problems at extremes of Q 
etc. so use it with care ! 

Scattering from diblock copolymer L.Leibler, Macromolecules 13(1980)1602-1607, eq IV-2 to IV-8.   

LTYP=51 scale = ??? x ∆ρ2                   needs checking - is probably as per LTYP=61 below ! 

             2 N monomers per molecule 

             3 a = length per monomer  ( RG
2 = Na2/6 )  

             4 f = fraction of molecule of one scattering type 

5              χ = interaction parameter ( per monomer ? ) 

Scattering from H-shaped polymer, with deuterated tips ( a development of Leibler’s diblock copolymer). 

LTYP=61 scale = V∆ρ2   where V = volume of whole molecule = MW/(ρbulk.NA),  

∆ρ = scattering length density difference. 

             2 Rg - radius of gyration of deuterated end of arm 

             3 fa = 4f1 = fraction of  molecule deuterated 

             4 fb = fraction of molecule in backbone (or cross bar ) = f3 

             5              χ = interaction parameter ( per monomer ? ) 

Scattering from H-shaped molecule with deuterated tips, see D.J.Read, Macmolecules 31(1998)899-911, 
noting that M in equation (68) should be number of monomers zi in each section of the molecule.  The 
general form of the equation for an incompressible system is: 
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where there are N polymer molecules per unit volume and the bX are scattering lengths of monomers.  It is 
more convenient to work in scattering length densities and fractions of the molecule in each part, f1 for one 
deuterated tip, f2 for the remainder of each arm, and f3 for the cross-bar.  The RG of parts 2 & 3 are scaled as 
for Gaussian coils i.e. RG2= RG1√(f2/f1) etc. 

Kholodenko Worm- like chain. A.L.Kholodenko, Macromolecules 26(1993)4179-4183, for an example of its use see 
P.Hickl, M.Ballauf, U.Scherf, K.Mullen & P.Lindner Macromolecules 30(1997)273-279.   

For long thin rods I(Q) ˜  PWORM(Q)PAXIAL(Q).    After slight rearrangement of the original equations (using L = nl ): 
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These equations go smoothly between Gaussian coil, Q-1 and Q-2 behaviour for appropriate values of n 

and l.  For large nl as expected at higher Q, 
QL

PWORM

π→ .  Trial and error will be required for different 

combinations of n and l giving the expected contour length L = nl, especially if the fit is "stuck" in one of 
the limiting forms.  Check the value of the SCALE parameter to find a "best fit". The model will ask for two 
numerical integration schemes, the first for PROD(Q) and the second for the polydispersity in L.  You will 
also be asked for Wmax to determine the maximum L to be included.   

The code in FISH carefully allows for the low Q limits and for potential numerical over flow or under flow 
situations.  The Schultz distribution used here is not stored in the POL workspace (nor pre-processed by 
POLSET) thus this model may be repeated or even added to polydisperse spheres.  β(Q) corrections are 
calculated. 

LTYP=71 has a radial Guinier form for PAXIAL(Q) : 
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31 exp)()()( AXAXIAL RQALNQP −−= ρρ        where for a uniform scattering length density, in 

general, the mass per unit length  
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MM = gives cross sectional area
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= .  Specifically for a 

uniform cylinder A = 2πRAX
2, though the following model might then be more appropriate.  The scaling 

here may be presented with various other molecular parameters using the equations in Model 14 LTYP=1, 
especially if the Q-1 limit of PWORM(Q) is included. 

LTYP=81 has an axial core/shell cylinder for which (c.f. model 8,  LTYP =61): 
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For numerical convenience FISH calculates SCALE x (V.P(Q)) in order to make the fitted SCALE either 
constant or to vary more slowly with changing shape of the worm. 

LTYP=71 SCALE = 10-24φ(ρ1−ρ3)2   where for N worms per unit volume, core volume fraction  

φ = N.(2πRax2nl).   NOTE - since we do not know ML,  FISH assumes Rax is for a cylinder, for which 
R=v2.Rax.  If you do know ML, then calculate the proper SCALE = (2πRax2)SCALEFISH/A  where A is the 
cross sectional area described above.  As usual ρ1 & ρ3 are scattering length densities in cm-1 for the 
worm and solvent, molecular dimensions are in Å, I(Q) in cm-1 and Q in Å -1. NOTE this is NOT the same 
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SCALE as the normal rod model 18 1, this choice makes it simpler to add a "wet shell" to a known "dry 
core". 

           72 n  gives total mean chain contour length L = nl 

           73 l  statistical chain element length (Kuhn length ) = 2 x (persistence  length). 

           74 Rax  cross sectional radius of gyration of the chain, assuming a Gaussian scattering density 
   distribution.  If Rax < 1.0 Å the cross sectional term is set to 1.0, giving just the infinitely thin worm. 

           75 not used. 

           76 not used. 

           77 polydispersity (σ/LMEAN) in chain length (with fixed l );  monodisperse if    (σ/LMEAN) < 0.01 

Kholodenko worm- like chain with core/shell cylinder.  Beware this model has a lot of parameters, whole 
families of best fits may exist even with ideal data. 

LTYP=81 SCALE = 10-24φCORE (ρ1−ρ3)2  

where for N worms per unit volume, φCORE = N.(πR1
2nl) 

           82 n  gives total mean chain length L = nl 

           83 l  statistical chain element length (Kuhn length ) = 2 x (persistence  length). 

           84 R1 radius of core. 

           85 DELR shell thickness such that outer radius   R2 = R1 + DELR 

           86 CONTRAST = (ρ2 - ρ3)/(ρ1 -ρ3), where ρ1, ρ2, ρ3 are for core, shell & solvent.  NOTE again that  

this is NOT the same as rod model 18 1, and that for a hollow shell the value here becomes infinite. In 
practise try using some large number like 100 or 1000 for a hollow worm. 

           87 (σ/LMEAN) polydispersity in chain length, for a Schultz distribution of contour lengths with fixed l,  

taken as monodisperse if  (σ/LMEAN) < 0.01 

 

 

MODEL 15 

Smearing for instrument resolution. This is normally done AFTER all other calculations, before the 
MODEL 99 record.  Partial shift PS(i) has no effect for this model, which cannot be refined, except by trial 
and error adjustment of RSCALE  Both the calculated data and its derivatives in the least squares are 
smeared. 

Except for LTYP = 41 the resolution function is divided into NSIMP intervals over ±3.5 standard deviations 
and Simpson's rule is  used to convolute the calculated intensity I(Q) ( but not the background in WRK ). 
The data and its derivatives are required at NSIMP Q values for each point in the data.  These are found 
either by interpolation of local cubic functions through groups of 4 points in I(Q) or more slowly by exact 
calculation.  Outside of the original Q range exact calculations are always made for I(Q) and its derivatives 
as the local cubic may not extrapolate well.  NSIMP must be an odd number >5, e.g. 21  The main FIT 
MENU option 2 allows the unsmeared data to be stored in a separate data set.  LTYP = 41 uses a supplied 
resolution function (e.g. vanadium data for quasi-elastic scattering). 

NOTE set RSCALE to zero to turn off the smearing. 

LTYP = 1 RSCALE Gaussian resolution function estimated for typical LOQ conditions  

              2 NSIMP  (using old LETI detector and λ=2-10Å), width is multiplied by RSCALE.  

LTYP=11 RSCALE   as above, but exact calc at all points instead of cubic interpolation. 



 28 

            12 NSIMP  (this  is the best option to try first, use RSCALE = 1.0, NSIMP = 21.0 ) 

LTYP=21 RESOL Constant resolution of FWHM= RESOL, note RESOL=2.35σ 

            22 NSIMP 

LTYP=31 RESOL   as above, but exact calc at all points instead of cubic interpolation. 

            32 NSIMP 

LTYP=41 RSCALE   Uses resolution curve stored in set 9 ( hard wired as IV = 9 in code), assumed on 

            42 not used  bins smaller or roughly equal to those of the data.  The function may be 
broadened  

or narrowed by a factor RSCALE.  In a loop over Q = Qdata + RSCALE x Qresol the calculated I(Q) is 

interpolated by a local Lagrange cubic function, and the convolution summed by the trapezium rule.  The 
resolution data is used over the range determined by NC3(9) to NC4(9). 

LTYP=51 RSCALE Resolution function estimated (Apr 96) for LOQ ORDELA detector, λ = 2.2-10 Å. 

Uses a Gaussian “stretched” in tails ( see model 27, LTYP=71) parametrised by fits to LOQ data simulated 
at selected Q values.  Resolution is multiplied by abs(RSCALE). Negative RSCALE uses cubic 
interpolation except at ends of Q range, positive RSCALE uses exact calculation at all points.   

              52 NSIMP 

LTYP=61 RSCALE as above, LOQ ORDELA detector λ = 6-10 Å, these needs redoing for “new”  
                            Ordela multi-wire detector (     ) which has better resolution – meanwhile try say RSCALE = 0.8 

            62 NSIMP 

LTYP=71 RSCALE as above, LOQ High Angle Bank - initial estimate - λ = 2.2-10 Å. 

            72 NSIMP 

LTYP=51,61,71 assumes a sample diameter of 8 mm.  Approximate values of abs(RSCALE) to suit other 
beam diameters, are given in the table below, based on comparisons of simpler calculations of mean 
FWHM.  RSCALE varies in a roughly linear fashion with Q. 

             Sample diameter = 10 mm 12 mm 14 mm 

ORDELA  low Q 1.045 1.105 1.17 

       “          high Q 1.035 1.085 1.14 

HAB  low Q 1.060 1.13 1.21 

    “    high Q 1.035 1.08 1.13 

 

MODEL 16 

Teubner and Strey ( J.Chem.Phys. 87(87)3195 ) ( no calc of β(Q)) This assumes  
g(r) = (d/2πr)exp{-r/ζ}sin(2πr/d)   i.e. a sinusoidally varying domain scattering length density with the 
oscillations damped out by a correlation length ζ.  No deductions may be made about the three 
dimensional nature of the structure involved.  The model will "fit" a wide range of interacting particles or 
bicontinuous/porous structures as long as the diffraction pattern has a fairly broad peak.   

LTYP=1  I(Q=0) = Io I(Q)= I(Q)+ Io/[ (1-Io/Im).{(Q2/Qm2 -1)2 + Io/Im ] 

           2  I(maximum) = Im 

           3  Q( peak) = Qm  see below to relate these to d and ζ 
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Teubner and Strey, second form, this is one place where LTYP must be correct on all three records ! 

LTYP=11 1/I(Q=0) I(Q)= I(Q)+ I(Q=0)/[ 1 + A.Q2 + B.Q4 ] 

            21 A/I(Q=0) 

            31 B/I(Q=0) 

Teubner & Strey correlation length z and domain size d are given by: 

      ζ − = + = − −2 1
2

2
0

1 2 1
2

2

2 4
B A

B
Q I I I QM M M M( / ( )) /  

2
2 4

2
1
2

2
0

1 2 1
2

2π
d

B A
B

Q I I I QM M M M





 = − = − +( / ( )) /  

( )
I

d Q I
I I I I I

M M
M M M0

2

2 2 2

2

3 0 0
1 2 1 28 1

2

8 1
2

1=
−

+
=

−
− − −

−

πφ φ ρ

ζ π ζ

πφ φ ρ( )( )

( / )

( )( )
( ){( / ( )) }/ /∆ ∆

 

where φ and (1-φ) are the volume fractions of the phases. Note that in the limit k → 0 the Debye model (see 
below) is obtained and ζ = ao, however Qm becomes imaginary so model 17 must be used instead.   

MODEL 17 

Debye random two phase / Wang et.al. The Debye model for random two phase structure has  

g(r) = exp{-r/ao)  which gives A = 2ao
2, B=ao

4 in the T&S second form above.  It is also a special case of a 

model  proposed by Z.-Y.Wang, M.Konno & S.Saito, J.Chem.Phys. 90(1989)1281-1284,  using g(r)= exp{-
r/ao}cos(Qor).  ( The full model appears similar to one of the terms in the Cahn-Hilliard scheme for spinodal 

decomposition. ) 

LTYP=11 Iz  I(Q)= 4π<η2>ao
3{(1 + Qo/Q)/(1 + ao

2(Q+Qo)2)2 + 

           12 Qo    (1 - Qo/Q)/(1 + ao
2(Q-Qo)2)2} 

            13 ao 

    Correlation length   ζ = ao/(1 + ao
2Qo

2) 

The I(Q) above is as given in the original paper, in which it is noted that I(Q) can tend to go negative at 
low Q !  Only in some cases does Iz approximately equal I(Q=0). 

    Iz = 8π<η2>ao
3/(1+aoQo)2 

Set Qo=0 to obtain the exact result for the Debye model (also see MODEL 27, LTYP=1 ) for which 

    I(Q) = I(0)/ ( 1 + ao
2Q2)2 and I(0) = Iz = 8πφ(1 - φ)(∆ρ)2ao

3 

MODEL 18 

Rods ( or discs) or oriented rods, of full length L and radius R.  For N randomly oriented rods the form 

factor P(Q) is:   P Q N F Q d( ) ( ) sin( )
/

= ∫ 2

0

2
γ γ

π
 

where F Q V
QL

QL
J QR

Q R
( ) ( )

sin( cos )
cos

( sin )
sin

= ∆ρ
γ

γ
γ

γ

1
2

1
2

12    in which J1(x) is the first order Bessel 

function of the first kind, V = πR2L and we must integrate numerically over angle γ between the Q vector 
and the axis of the rod.  FISH will prompt for a choice of integration scheme (or do K5 = 1), see notes on 
model 6.   
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Note that F(Q=0) = (∆ρ)V and that further similar terms may be added to F(Q) for “core plus shell” 
systems. (See I.Livesey, J.Chem.Soc. Faraday Trans 2, 83(1987)1445-1452) 

 

 

LTYP=1 or 11 SCALE - rigid, core/shell rod (or disc ) with a shell at the end ( LTYP=1) or without a shell at the end 

  (LTYP =11 ) of the rod. 

            2  R - radius   ( NOTE  this is the OUTER radius for core/shell cases, NOT the inner one.) 

            3  LENGTH 

            4  DR - shell thickness 

            5  CONTRAST = (ρ1 - ρ2)/(ρ2 -ρ3)  
  where ρ1 is for inner region, ρ2 for outer region and ρ3 for the solvent. 

Set DR and/or CONTRAST to zero for a uniform rod.  For a hollow cylinder CONTRAST =  -1.  See also 
CONSTRAINTS 17 &18. 

SCALE = 10-24 φ (ρ2- ρ3)
2 where φ = volume fraction, scattering length density ρ is in units of cm-2, and rod 

radius R and LENGTH are assumed  to be in Å.  SCALE is thus invariant for a given system and consistent 
with the approach used for polydisperse spherical particles.  SCALE has the same meaning for both 
uniform solid and core/shell rods, but note that it depends on the shell scattering length density, so it will 
vary if CONTRAST is adjusted ! 

(Before Aug 96, earlier in the TEST version,,  SCALE = 10-48N(ρ2-ρ3)2 = 10-24(ρ2-ρ3)2φ/(πR2L)  where 
there are N cylinders per cm3..  Defined in this way SCALE changes rapidly with the dimensions L and R of 
the cylinder which was not good for the fitting procedures.  Prior to March 93, LTYP=1 had no shell at the 
end and LTYP =11 did not exist.) 

(Ratio β(Q) is calculated, so this P(Q) may be combined with a structure factor. Between Aug 96 and Nov 
2000 this was however not calculated correctly, due to a mistake in the scaling of F(Q), which made S'(Q) 
very small.) 

LTYP= 21 or 31 SCALE = 10-24 Φ (ρ2- ρ3)
2  Rigid rods, with or without end-cap, oriented by shear flow. 

             2 R outer radius, defining volume fraction Φ = NπR2L 

             3 L  Length of rod. 

             4 DR  shell thickness 

             5 CONTRAST = (ρ1 - ρ2)/(ρ2 -ρ3), as for LTYP=1,11 

             6 Γ = G/Dr  Ratio of shear gradient G to rotational diffusion constant Dr, see constraint 14. 

             7 Ψ angle of Q to flow direction ( degrees) 

             8 dΨ If dΨ > 0 then the program will also integrate over (Ψ - dΨ) to (Ψ + dΨ)  

This follows exactly J.B.Hayter & J.Penfold, J.Chem.Phys. 88(1984)4589-4593 for Couette flow where the neutron beam 
passes twice through the sample. 
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where F(Q) is as above,   cos sin cos cos cos sinγ θ φ θ± = ±Ψ Ψ  

and the rod orientation function is taken to be: PS ( , , )
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in which  2φ0 = atan( 8/Γ) and F(Q) is as given above.  Note that if G = Γ = 0 then 2φ0 = π/2 and PS(θ,φ,Γ) = 1/(4π).  As G 
increases the angular distribution narrows and the  most probable angle moves towards the flow direction, but never 
reaches it due to the effects of rotational diffusion, e.g. at Γ = 10, 2φ0 = 0.2148π. 
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When Ψ = 90º ( Q is roughly perpendicular to the rod axis) we have γ+ = θ and γ– = (π – θ) so the integrals and range of 
integration simplify to: 

P Q F Q d( , )
( cos )

( sin cos )
( ) sin/

/
Ψ = =

−
−∫90 o 2

1 2
1 2

0
2

0
3 2

2

0

2 φ
θ φ

θ θ
π  

Some experimentation with the numerical integration schemes used in FISH will be required, especially if L/R is large, and 
Γ is large.  Automatic integration routines are little use for the dθ integral as the functions oscillate rapidly, a Simpson 
rule of at least 359 points seems best.  The dφ integral seems to behave well with an adaptive Gauss/Kronrod rule.  If the 
dΨ integration is used at all, a 4 point Gaussian quadrature should suffice, except perhaps at very small Q and large Γ 
when more points might be better.  Except at Ψ= 90° the calculations are VERY slow, the Q range and number of data 
points should be restricted.  Use K4 = n  to include only every n’th point in the least squares.  The rod length determined 
depends very much on the constraint applied to Γ via an approximation for Dr (see constraint 14).  It is possible in FISH 
to fit say Ψ = 0 and  Ψ = 90 data sets simultaneously, with Γ constrained to the applied shear gradient and the viscosity 
of the solvent.  The program will run faster if the slow Ψ=0 calculation is first in the model parameters, so the derivatives 
calculated for the larger number of tied ( PS(i) = -1 ) parameters in the second data set will be for a faster Ψ=90 case ( - 
else wise turn OFF tied parameters in the second set if they are not actually adjusting, use n=TIE to reintroduce a 
constraint). 

(NOTE At present only F2(Q) and not F(Q) is calculated, so ratio β(Q) to modify any S(Q) is not applied) 

LTYP= 41 or 51  Maier-Saupe “nematic phase” distribution of rigid rods, with or without end-cap. 

             2 - 8   As for sheared rods above. 

Using the same coordinate system, the orientation function PS(θ,φ,Γ) above becomes PMS(θ,m) where the 
distribution of angles of the rod to the vertical θ is given by: 
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where all angles φ are equally likely. The larger the value of m the greater the degree of orientation, 
numerically a maximum of m ~ 50 is possible, whilst m < 0.1 gives an almost random distribution. 

The lack of φ dependence allows simplification of the integral for P(Q) when Ψ= 90°, Q is parallel to the 
average rod axis ( i.e. the opposite to the sheared rods above ! ) and γ = θ: 

P Q P m F Q dM S( , ) ( , ) ( ) sin
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Ψ = = ∫90 o 4 2

0

2
π θ θ θ

π
 

The Maier-Saupe distribution is used for a nematic liquid crystal by F.Hardouin, Gsigaud, M.F.Achard, A.Brulet, 
J.P.Cotton, D.Y.Yoon, V.Percec & M.Kawasumi, Macromolecules 28(1995)5427-5433, though their equation (9) for 
P(Q,Ψ=0) is wrong !  They cite the Maier-Saupe distribution as being from P.G.DeGennes, “The Physics of Liquid 
Crystals”, Oxford Press, 1974, p43.  The latter mistakenly relates the normalising integral in the denominator of PMS to an 
error function.  Note that m is a positive number, not negative. 

LTYP= 61 or 71  “End - on view” of Maier-Saupe distribution of rigid rods, with or without end-cap. 

             2 - 8   As for sheared rods above. 

In the Hayter-Penfold coordinates ( the beam goes along y, the vertical is z, Q is in the x-z  plane ) we now define the 
Maier-Saupe distribution for angle β between the rod axis and the y direction, and angle α between the rod axis and the 
x-z plane.  As before the angle between the rod axis and Q is γ, but now   cosγ = sinβ(cosΨcosα - sinΨsinα) = 
sinβcos(Ψ-α), so that the scattering is, as expected, independent of Ψ. 
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Note the LTYP=7 & 8 lines are still needed, the value of Ψ is ignored (set zero internally), though an integration will be 
carried out if dΨ ≠ 0.   

When m is very small P(Q) is almost the same as for the previous model, with m small also, and of course the same as for 
LTYP=1 or 11 the randomly oriented rod.   When m or Γ is very large, the rod radius very large and the rod length small, 
then any of the oriented rod model results may be compared with model 28 for thin interfaces. 
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MODEL 19 

Correlation hole structure factor.  This assumes g(r)=0 for r<h and g(r)=1 for r>h, an exc lusion volume of 
radius h about some object, as proposed by deGennes. 

LTYP=1  Hole volume fraction η   S(Q) = 1+ 3η[Qhcos(Qh) -sin(Qh)]/(Qh)3 

            2  Hole radius h    I(Q) =  I(Q)*S'(Q) 

 

MODEL 20 

I(Q) = I(Q) + A*QN      where A and N may be determined, useful to add in a Q-4 background etc. (see also 
MODEL 11).   Uses FORTRAN for Q**N, so N must be valid for ** operation. 

LTYP=1  A 

         =2  N 

 

MODEL 21 (Compare MODEL 24) 

Ellipsoid of revolution of radii A, A, and C=X*A.  This requires a numerical integration for I(Q) 

LTYP=1  SCALE    I(Q) = I(Q) + SCALE Φ 2

0

2
( ) sin( )

/
u dα α

π

∫  

         =2  A radius    where Φ(u) = 3( sin(u) -u.cos(u))/u3 

         =3  X axial ratio   and u = QA( sin2(α) + X2cos2(α))½   

Alternatively change the variable to µ=cos(α) and integrate from zero to one. ( calculates β(Q) so can use 
with structure factor). 

MODEL 22 

Hard sphere structure factor, Percus-Yevick equation, as solved analytically by N.W.Ashcroft and 
J.Lekner, Phys.Rev. 145(1966)83-90, multiplies previous I(Q). Note first peak is at approx Q=3.5/R.  

LTYP= 1 ETA volume fraction of dispersed spheres 

         = 2 R radius of hard spheres.   

Hard sphere with square well, according to R.V.Sharma & K.C.Sharma, Physica A89(1977)213-218.  How this relates to the 
"Baxter sticky hard sphere" S(Q) (of later date) I am not sure as I have not been able to find the actual 
equations for the latter.  [Thanks to R.Triolo for pointing out the Sharma paper and cross checking results 
here.] 

LTYP= 11  ETA volume fraction of dispersed spheres 

= 12 R  radius of hard spheres.   

= 13 eps/kT  depth of square well, attractive is negative. 

= 14 lambda  square well extends to lambda x diameter 

 

MODELS 23 & 25 

Structure factor for charged spheres.  MODEL 25 has an extra two records to add in a critical scattering 
term ( note not same as model 7 as the extra +1 there is avoided).  If LTYP(1) = 1 the Hayter-Penfold one 
component macroion (OCM), RMSA, model is used (with penetrating background), J.P.Hansen & 
J.B.Hayter, Mol. Phys.46(1982)651, J.B.Hayter & J.Penfold, Mol.Phys. 42 (1981)109-118.  Thanks are due to 
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J.Penfold for allowing his code to be included directly in FISH and to C.Fagotti for implementing it and re-
parametrising the equations.  LTYP(1) = 11 gives the GOCM model of L.Belloni, J.Chem.Phys 85(1986)519 

 

LTYP=1 or 11 Sphere radius 

            2  Q  charge (electrons) per sphere 

            3  AKK inverse Debye screening length ( Å-1) 

            4  ETA volume fraction 

            5  (model 25 only)   I0(crit)  S(Q) + I0(crit)/(1+ζ2Q2) 

            6       "      "     "    ζ  correlation length for critical scatter 

  AKK=1/rD where rD
2 = εoKrRT/(2ρNA

2e2I) 

  I= ionic strength = 0.5 Σ(m+z+
2 + m-z-

2)  where m = molality 

  e.g. for a 1:1 electrolyte, I=m, at 0.1 molal in water at 25°C, relative permitivity Kr=78 

  rD
2 = (8.85x10-12C2N-1m-2) 78 (8.31JK-1mol-1)(298K)(1020Å2m-2) 

                                    _____________________________________________________ 

                2 (103kgm-3) (6.02x1023mol-1)2 (1.6x10-19C)2 (0.1molkg-1) 

  so rD = 9.6Å,  AKK= 0.10 Å-1 

MODEL 24 

Two shell ellipsoid (compare MODEL 21 )  If the LTYP(1) = 1 then (outer radius / inner radius) is constant 
at all points; for LTYP(1) = 11 the outer shell has a constant thickness of δ.  LTYP(1) = 21 or 31 are 
specially constrained cases of LTYP(1) = 1 or 11 respectively, used by C.Fagotti for swollen micellar 
systems.  In these cases simple physical parameters are used, via the CON(i) array to compute the 
scattering, see Appendix C.  Note you will be prompted for a choice of numerical integration method, see 
notes on model 6. 

LTYP=1,11,21,31 SCALE  npVT
2(ρ2-ρ3)2      NOTE this is for the OUTER step !! 

           2   R1 inner radii are R1 : R1 : X.R1 

           3   X      X=1 for sphere, X < 1 for oblate, X >1 for prolate 

           4   R2 (if LTYP=1), δ ( if LTYP=11)  

           5   coefficient of 3j1(u1)/u1,  NOTE this is not tied to the other parameters in any way : 

   ( but see CONSTRAINTS 15, 16 & 17 which will do this for LTYP(1)=11 ) 

   if LTYP(1)=1 [ ( (ρ1 - ρ2) / (ρ2 - ρ3) )(R1/R2)3 ] 

   if LTYP(1)=11 [ ( (ρ1 - ρ2) / (ρ2 - ρ3) )XR1
3 / ( (R1+δ)2(R1X+δ) ) ] 

We need:  I Q I Q n F Q dp( ) ( ) ( , )= + ∫ 2

0

1
µ µ    where: 

 F(Q,µ)  = Vcore3(ρ1-ρ2)3j1(u1)/u1  + Vtotal3(ρ2-ρ3)3j1(u2)/u2 

  = (4π/3)(ρ2-ρ3)XR2
3.[ 3j1(u2)/u2 + 3(R1/R2)3( (ρ1 - ρ2) / (ρ2 - ρ3) ) j1(u1)/u1 ] 

  in which  u1 = Q.R1[ (1-µ2) + X2µ2 ]½ 

    u2 = Q.R2[ (1-µ2) + X2µ2 ]½ 
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     j1(u) = ( sin(u) - u.cos(u) )/u2 

and ρ1, ρ2, ρ3 are the scattering length densities of the core, outer shell and solvent respectively. 

 

For LTYP(1)=11  F(Q,µ) = (4π/3)(ρ2-ρ3)(R1+δ)2(R1X+δ).[ 3j1(u2)/u2 + 

   {( (ρ1 - ρ2) / (ρ2 - ρ3) )(R1
3X/( (R1 + δ)2(R1X + δ) )}3j1(u1)/u1 ] 

  where u1 is as before and   u2 = Q.[ (1 - µ2)(R1 + δ)2 + (R1X + δ)2µ2 ]½ 

MODEL 26 

Approximate form factor for surface fractals, see e.g. Teixeira J.Appl.Cryst. 21(88)781-785 or Schmidt et.al. 
J.Chem.Phys. 90(89)5016-5023, derived in H.D.Bale & P.W.Schmidt, Phys.Rev.Letts. 53(84)596-599.  This is 
only for Q >> 1/ζ  where ζ is the average pore or object size.  Compare MODEL 13 for volume fractals.  

   I(Q)= I(Q) + π∆ρ2S Γ(5-ds) sin{(ds-1)π/2}Q-(6-ds) 

LTYP=1  scale 

            2  ds surface fractal dimension,    for smooth surface to rough surface,  2 < ds < 3,  

   scattering at high Q goes approximately as Q-4 to Q-3 

For ds=2 the Porod limit is reached and scale = π10-32(∆ρ)2S  with ∆ρ in cm-2 and surface area per unit 

volume, S, in cm-1  [ The meaning of S for higher values of ds is not clear ??? ]  A diffuse interface may 

have a steeper gradient than Q-4, see the modified Porod of MODEL 12. 

LTYP=11 S/V in cm-1  Andrew Allen version, see MODEL 13 

            12 D Fractal dimension 

            13 ∆ρ in 1010 cm-2 (NOTE - won’t adjust independently of S/V ) 

            14  ζ 

 

MODEL 27 

“Peaks” and network functions - Lorentzian plus Debye-Beuche; Lorentzian for quasi-elastic neutrons, 
Gaussian function, Voigt ( Gaussian convoluted with a Lorentzian), Gaussian to exponential, Ikeda-
Carpenter moderator function, and Gaussian convoluted with an exponential. 

LTYP =1 Gel networks etc., as proposed for aqueous gelatin by I.Pezron et.al. Polymer 32(1991)3201-3210.  
Lorentzian plus Debye-Beuche.  (See MODEL 7 for a similar structure factor and MODEL 17 for the Debye 
term.) 

  I(Q) =  I(Q)   +   I1/(1 + Q2ξ2)     +     I2/(1 + Q2a2)2 

LTYP=  1 I1 I(Q=0) Lorentzian term 

              2 ξ screening length for a semi-dilute solution c > c*  , in a good solvent is the average mesh  
  size of a transient network. 

              3 I2 I(Q=0) Debye-Beuche term (compare notes on MODEL 17). 

              4 a decay length for inhomogeneities of correlation function γ(r) = exp(-r/a) 

LTYP = 11 has a Lorentzian for quasi-elastic neutron scattering, for which see also MODELS 4, 11 & 15 
and compare the methods in D.S.Sivia, C.J.Carlile, W.S.Howells & S.König, Physica B 182(1992)341-348. 

LTYP= 11 A  Lorentzian for inelastic neutrons:       I(Q) = I(Q) +A.W/{ 2π ( (E - δ)2 +(W/2)2 )} 

             12 W FWHM of peak 
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             13 δ shift in Q or E scale 

 

LTYP= 21 SCALE  Gaussian peak     I(Q) = I(Q) + SCALE*exp{-0.5*((Q-Q0)/σ) )2 } 

             22 W FWHM of peak.     Standard deviation σ = max( W/sqrt( 2 ln(2) ), 1.0e-12 ) 

             23 Q0 peak position 

LTYP=71, “Stretched Gaussian peak, as for LTYP =21, except extra terms added, as used for empirical 
fitting of LOQ resolution function. 

LTYP= 71 SCALE  I(Q) = I(Q) + SCALE*exp{-0.5*[(Q-Q0)/(σ + (abs(σ2)+ σ3 )(Q-Q0) ) ]
2 } 

             72 W approximate FWHM of peak,     σ = max( W/sqrt( 2 ln(2) ), 1.0e-12 ) 

             73 Q0 peak position 

             74 σ2 symmetric stretch of tail 

             75 σ3 asymmetric stretch of tail 

 

LTYP= 31 SCALE  Voigt function, Gaussian convoluted with a Lorentzian 

             32 σ   Computed from real part of complex error function, 

             33 γ   see source code from W.I.F.David. 

             33 Q0 peak position 

 

LTYP= 51 SCALE  Gaussian going over to exponential, with continuous first derivative 

             52 W  As LTYP=21 when (Q - Q0) < σ2/τ 

             53 Q0  when (Q - Q0) > σ2/τ   then: 

             53 τ  I(Q) = I(Q) + SCALE.exp{ σ2/2τ2}exp{-( Q - Q0)/τ } 

 

LTYP = 61 SCALE  Ikeda-Carpenter equation for moderator time distributions. 

              62 Σ/λ = 2.5277842α,  where Σ is in cm-1 and wavelength λ in Angstrom 

              63 t0    time origin offset, times assumed in µsec, 

              64 1/β 

              65 R,  fraction in storage term,  0 ≤ R ≤ 1 

Ikeda & Carpenter ( Nucl.Instrs. & Meths. A239(1985)536-544) first note that for high energy neutrons, from an 
hydrogenous moderator the time distribution should approximate to the chi-squared distribution expected for neutrons in 
an infinite medium of free protons at rest, with no adsorption : 
 φ ( , ) ( ) e x p ( )v t

v
v t v t= −

Σ
Σ Σ

2
2                   (t > 0)   

where v is the neutron speed and Σ is the neutron scattering cross section.  At short times this predicts a universal 
shape for the neutron pulse if time is scaled by v.  At long times their experimental observations suggested a decay time 
independent of neutron wavelength, as might be expected for the moderation process.  A fraction R of the neutrons are 
convoluted with an exponential of decay time 1/β to give a neutron  pulse shape that is the sum of “slowing down” and 
“storage” terms: 
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LTYP = 81 SCALE   Gaussian convoluted by an exponential 

              82 σ 

              83 Q0 

              84 1/β 

A Gaussian  exp{ - 0.5*(( Q-Q0)/σ )2 }/( (2π)0.5σ ) is convoluted with an exponential βexp{-βQ }, where both functions are 
normalised to unity, to give: 

 ( )I Q I Q Q Q erfc
Q Q

( ) ( ) exp ( ) ( )
( )

= + − − −
−
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1
2

1
2

2
0
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 where    erfc x e xx

x
( ) = −∞

∫2 2

π
d  

See J.M.Carpenter, R.A.Robinson, A.D.Taylor & D.J.Picton, Nucl.Instr. & Methods A234(1985)542-551 for use of a pair 
of these terms to model the fast & slow components of pulsed source diffractions peaks ( compare the Ikeda-Carpenter 
equations above), where Q is then actually of course time. 

 

MODEL 28 

Form factors for scattering from a thin interface, which may be used either alone, or in conjunction with 
Model 29 for a one dimensional para-crystalline stack.  ( The separation of form factor P(Q) and structure 
factor S(Q) allows details of interfacial structure to be included.  An “all-in-one” approach is included as 
MODEL 29, LTYP=11 which allows a third, background, phase of different scattering density, but assumes 
sharp interfaces to the layers. ).  Some of the models here are mathematically closely related to those used 
for polymers at large radius interfaces (RKH still to investigate the links here !) 

LTYP(1)=1, 21 and 31 have a Lorentz factor to approximately allow for a small Gaussian distribution of surface normals 
around the Q vector.  Following Appendix A of N.T.Skipper, A.K.Soper & J.D.C.McConnell, J.Chem.Phys. 94(1991)5751-
5760 we multiply by  

L Q
Q RN ( )

( )
=

+
1

1 1
2

2 2σ
 

When Rσ is very large this corresponds to the Q-2 Lorentz factor used by Kotlarchyk et.al. following M.Shibayama & 
T.Hashimoto, Macromols. 19(1986)740-749 as an approximation for randomly oriented stacks.  When Rσ = 0 the Q vector 
is always normal to the surface, i.e. the interface is perfectly flat.  In practise the Rσ term is always significant and the 
theoretical Q-2 behaviour of the form factor for a flat sheet is rarely seen.   

LTYP(1)= 1 or11 (which is now redundant, just set Rσ = 0 ) has a rectangular profile of mean thickness L, with a Schultz 
polydispersity characterised by width σ(L)/L.  This is convoluted with a Gaussian  

exp(-z2/2σ2) to allow for interfacial  diffuseness t = (2π)½σ.  See M.Kotlarchyk & S.M.Ritzau, J.Appl.Cryst. 
24(1991)753-758 [ assumed factor of 4 missing in eqn 17].   

NOTE that the scaling constant is as for LTYP=21 below, but is multiplied by L2 where L is the layer 
thickness in Å.   

NOTE that even modest values of t cause the form factor ( on a log plot) to fall off rapidly at high Q. 

 LTYP(1) = 1 11 21 31 

n1 scale’ = scale.L2 as for LTYP=1  scale scale 

 2 t  interface 
diffusness 

        " l1  core thickness l1  core thickness 

 3 L  layer thickness         " (ρ2-ρ3)/(ρ1-ρ3) (ρ2-ρ3)/(ρ1-ρ3) 

 4 σ(L)/L  layer 
polydispersity 

        " l2  shell or head 

group thickness 

(1/κ)  exponential 
decay length for 
head group. 
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 5 Rσ  Lorentz factor (Ignored) Rσ   Rσ   

 

 

LTYP(1)=21 is a monodisperse symmetrical shell/core/shell layer, where we assume here the core has scattering length 
density ρ1 and thickness l1, the shell ρ2  and thickness l2 , and the solvent ρ3.  The total layer thickness is 
l1 + 2l2. 

We take the I(Q) = I(Q) + scale.LN(Q).f2(Q)  where (M.Kotlarchyk, E.Y.Sheu & M.Capel, 
Phys.Rev.A46(1992)928-939. checked by RKH ) we find: 
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For a randomly oriented sheet, as for a vesicle of large radius, we compare the scattering from a thin spherical shell of 
scattering length density ρ1 and thickness l1, of large radius Rsphere in a solvent ρ3, 
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to derive: scale =  10-32π(ρ1 - ρ3)2S(Rσ)2. where the scattering length densities are in cm-2, l1 in f(Q) and (Rσ) are in Å, and 

S is the area of sheet per unit volume of sample in cm-1.  [  S = N.4π(Rsphere)
2   ]  NOTE an extra factor of L2 is needed in the 

scale for LTYP=1 or 11 (as per table above). 

When combined with model 29 below, S is the total area of sheet, so for a multilamellar vesicle, the scale factor increases 
in proportion to the number of layers for a constant number of particles N, or remains roughly constant for a fixed 
amount of material in the layers. !   

( Note - in the limit of large l1 the sin2 term averages to 1/2 and we reach the normal “Porod” limit of  

     I(Q) → 2π S′ (ρ1 - ρ3)2 /Q4     where     S′ = 2S     since we count both surfaces of the sheet ! ) 

For “large” randomly oriented multi-layer stacks ( e.g. starch granules ? ) this should still be the correct form of the scale 
factor ( CHECK). 

For an oriented sheet,  where the scattering is in one direction in Q, one compares the scattering from an oriented disk of 
large radius Rdisk 
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to obtain: scale =  10-16.(ρ1 - ρ3)2 S2/N     where the scattering length densities are in cm-1, N is the “number of particles 

per unit volume” in cm-1, S is the surface area of sheet per unit volume of sample in cm-1  [ S = N.π(Rdisk)
2  ]    Note that for 

a truly infinite sheet,  S = N.(1cm)2 = φ / (10-8 l1 (Å) ).  This scale factor works seems to work reasonably well in practise, 

despite the fact that (Rσ) in LN(Q) may become quite large, when for an infinite, flat sheet it should be zero. 

The “scale” factors given here have been tested numerically by fitting hollow sphere, multi-layer vesicle and oriented 
disk data generated by other FISH models. 

Note that the way the “shell” has been programmed here, to simplify the scale parameter, causes difficulties when ρ1 = ρ3 
and we must use the equivalent equation ( RKH has not coded this - yet ): 
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LTYP(1)=31 monodisperse shell/core/shell, a rectangular core with exponentially decaying shell, characterised by decay 
length (1/κ) for which RKH has derived (typo in last term corrected 21/10/03): 
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If x=0 is at the centre of the core, then the scattering length density is ρ1 to x =l1/2, and ρ2exp{-κ(x - l1/2)} for larger x.  

Thus it is sensible, but not actually necessary, to have ρ2 = ρ1. 

 

 

MODEL 29 

One dimensional paracrystalline stack models.  Paracrystal models assume a particular type of disorder of 
lattice planes, in that successive plane spacings are chosen at random from a distribution function ( 
usually Gaussian).  Though nearest neighbour relationships may be physically reasonable, longer range 
correlations may not actually be representative of real structures.  The mathematics tends to produce 
oscillations at small Q, which may be smeared out to some extent by using an instrument resolution 
function. 

LTYP=1  Structure factor S(Q) for a one dimensional para crystal ( normally to be used with MODEL 28).  See 
M.Kotlarchyk & S.M.Ritzau, J.Appl.Cryst. 24(1991)753-758.  NOTE that the 1/Q2  Lorentz factor is included in MODEL 28.   
I(Q) = I(Q) * S'(Q) where S’(Q) is in equations (9)-(12) of the paper referenced. 

LTYP = 1 M number of layers in the stack. 

             2 D mean distance apart - plane spacing. 

             3 σ(D)/D Gaussian distribution in plane positions ( Hosemann g-factor ). 

             4 spare ( not used, but need to include ) 

LTYP = 11 or 21 Three phase model of W.Wenig & R.Bramer, Colloid & Polymer Science, 256(1978)125-132  using the 
method and notation of I.H.Hall, E.A.Mahmoud, P.D.Carr & Y.D.Geng, Colloid & Polymer Science, 265(1987)383-393. ( 
with some corrections for typographic errors re-checked by RKH, see comments in subroutine PARA3, and thanks to 
P.Jenkins & T.Waigh for copies of these papers and their routine DALLFIT ).  The model has separate probability 
distributions for the layers and for the gaps in the paracrystalline stack.  Scattered intensity is then derived in terms of 
the one dimensional Fourier transforms of the two distributions.  Layers and gaps are assumed infinite, parallel, flat 
sheets with sharp interfaces.  The stack may be immersed in a background medium of separate scattering density.  When 
ρ3 = ρ1  numerical results are almost identical for comparable cases to those of MODEL 28 coupled to MODEL 29, 
LTYP=1.  The LTYP=21 version multiplies by a Lorentz term with Rs as per MODEL 28. 

LTYP = 11 or 21 SCALE  as per MODEL 28, ignoring the ∆ρ2 which is included below.  NOTE this indirectly  

includes the effective volume fraction of the “stack” relative to the third “background” phase 

             2 M number of layers in the stack.  ( This is converted to INTEGER if either “top hat” distribution  

is used below, as the equation then involves (negative number)M .  M will probably then need to be 
adjusted by trial and error. ) 

             3 ρ2 scattering density of layers in stack 

             4 Y mean thickness of layers 

EITHER 5 σ(Y) standard deviation of Gaussian distribution for Y 

OR      15 δ(Y) width of “top hat”, rectangular distribution for Y 

             6 ρ1 scattering density of “gaps” in stack 

             7 D = X + Y mean d-spacing, where X = mean thickness of gaps. 

EITHER 8 σ(X) standard deviation of Gaussian distribution for X   OR 

OR      18 δ(X) width of “top hat”, rectangular distribution for X 

              9 ρ3 scattering density of background medium.  Set ρ3 = ρ1 if the background is not different.   

NOTE the equations, are not symmetrical, so do not set it to ρ2 !!  

(            10 Rs ) include ONLY if LTYP =21, multiplies I(Q) by Lorentz term, as for MODEL 28, 

 pushes  scattering up from Q-2 to Q-4 at small Q. 
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MODEL 88 

Allows simultaneous fitting of more than one data set. e.g. with different scale factors but the same model.   
LTYP=n means that following records apply only to the n'th data set in the fit, until the next 88 record ( n = 
1, 2, or 3; not the workspace number).  Use 88 0, i.e. LTYP=0 to return to normal “al sets” usage.  This will 
allow say a different scale factor and background for a simultaneous fit to two or three data sets, whilst 
sharing other model parameters.  In many cases additional constraints will be needed. 

MODEL 99 

The final scale to stop the calculation, ALWAYS required.  The accumulated intensity is multiplied by a 
final overall scale factor (useful to correct the units ) and stored away.  NOTE be careful not to have more 
than one scaling parameter refining at a time ! 

LTYP=1  SCALE  

  Calc(Q) = SCALE * [ I(Q) + WRK(Q) ]  where WRK(Q) contains the background 
         - see MODELS 3 & 4. 

 

CONSTRAINTS BETWEEN PARAMETERS 

Parameters in a fit or calculation may be tied together in various ways. The pair of control records needed for each 
constraint may be read from an LSQFILE or else the same information supplied interactively in the FIT routine by the Cn= 
command.  Simple linear or multiplicative constraints are fully programmed already, other constraint types would need to 
be added by the user into the FORTRAN routines CONTIE, CONOP and CONDER.  Such a case might be for complex 
geometric constraints within a molecular  structure. The normally available cases allow one for example to refine a multi-
shell small angle scattering profile where certain shell widths are fixed relative to each other, see the example included at 
MODEL 10. 

NOTE- for a constraint to become operative the partial shift PS(J) for V(J) must be set to -1.0  To turn on a constraint that 
has been turned off ( by n=OFF) use n=TIE.  To fix the value of a “tied” parameter, it may only be necessary to fix the 
parameter(s) to which it is tied. 

BEWARE - some of the later constraints NCON >14, may not be coded on all platforms - no error messages are given, so 
CHECK that the constraints are operating ! 

The records needed in the LSQFILE are: 

(vi) (a) (20I4) NCON decides the type of constraint relationship 

  J, K, L, M ....  integers decide which parameters are involved. 

     (b) (8F10.0) A,B,C,D .... numerical constants  
  ( this record is always expected, even if no constants are required by the constraint) 

The types of constraint available are: 

NCON=1 V(J) = A*V(K) + B*V(L) + C 

NCON=2 V(J) = V(K)*V(L) 

NCON=3 V(J) = 2.0*V(K)*V(L) used for, MODEL 6, (R2-R1)=2*λ*Rmid    
     ( See example file in Appendix B ) 

NCON=4 V(J) = (1.0-V(K))*V(L)  used for R1=(1-λ)*Rmid, λ=(R2-R1)/(R1+R2) 

NCON=5 V(J) = A*V(K)*V(L)**B + C*V(M) + D 

NCON=6 V(J) = [ A + B*V(K)*V(L)**C ]**D 

NCON=7 V(J) = [ (A + B*V(K))*V(L) + C*V(M) ]**D 

NCON=8 V(J) = V(K)*(A*V(L) +B) + C*V(M) + D 

NCON=9 V(J) = A*( B*V(K) + C )**D 

NCON=10 V(J) = { [ A*(V(K) + B*V(L) )**C ]*V(M) }**D 

NCON=11 V(J) = A*V(K) + B*V(L) + C*V(M) + D*V(N) + E  
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  (Earlier versions of FISH had one less term here, but old models are converted automatically on input) 

NCON=12 V(J) = (1.0 - V(K) )*( V(L) - V(M) )  

 

NCON=13 V(J) = V(K) - V(L) + V(M)*[ V(N) - V(K) ] + V(O)*[ V(L) - V(P) ] 

used for scattering length density difference where given relative concentrations of core and/or solvent 
penetrate a shell, (needs a dummy model 2 parameter for "zero" for only core or solvent case). 

NCON=14 Constraint for sheared rods, see model 18. Parameter numbers J, K, L, M are respectively for Γ, rod 

 radius R, shear gradient G (in sec-1) and η/T = viscosity/temperature ( for which Penfold et.al. use 3x10-5 
for D2O ).  G and η/T should be given as model 2 parameters, so for example  an “effective viscosity“ η/T 
may be refined within some physically reasonable limits.  Rod length L and shell thickness DR are assumed 
to be V(K+1) and V(K+2).  The constraint sets Γ = G/Dr, where rotational diffusion constant Dr is 
approximated by  Dr = 3kB(s-t)/(8π(η/T)L3) in which s = loge(L/R) and t = 1.57 - 7.0*(0.28 - 1/s )2.  The 
approximation is only good for large values of L/R, when s > 2.  For numerical stability FISH keeps s ≥ 2 at 
all times. 

NCON=15 Constrain parameter J = shell thickness δ, for core/shell ellipse MODEL 24, by solving a cubic  

equation for δ. Parameters K & L are y = (Volume of “dry” shell/ volume of core) & f = fraction of solvent in 
shell.  (Note this also uses parameters (J-1) and (J-2) for axial ratio X and inner radius.)  Usually you will 
also need constraint 16. 

NCON=16  Constrain parameter J = contrast term, for core/shell ellipse, MODEL 24 

Parameters K, L, M, N, O are respectively  y = (Volume of “dry” shell/ volume of core); f = fraction of 
solvent in shell; scattering length densities of core; dry shell; and solvent.  (also uses (J-2) and (J-3) for 
axial ratio X and inner radius.).  Values of  Vcore, Vtotal and ρ2 are stored in CON(9), CON(10) and CON(11). 
See also NCON=21.  BEWARE do not let shell disappear, as “contrast” becomes infinite giving divide by 
zero ! 

NCON=17  Constrain parameter J = new scale factor for further data sets of core/shell ellipse or core/shell rod,  

MODELS 24 or 18.  Parameters K, L, M, N,O,P are respectively: first scale factor; f = fraction of solvent in 
shell; scattering length densities of  first shell, first solvent, new shell, new solvent. 

NCON=18 Constrain parameter J = contrast for core/shell rod, MODEL 18, with solvent in shell. 

Parameters K, L, M, N, are respectively: f = fraction of solvent in shell; scattering length densities of core; 
dry shell; and solvent.   In this case divide by zeroes are tested and trapped. 

NCON=19 V(J) = A*V(K) + B*V(L) + C*V(M) + D*V(N) + E*V(M) + F*V(O) + G*V(P) 

NCON=20 "Hedgehog " constraint for contrast steps in a stretched out "polymer" shell (R.K.Heenan 22/7/98).  

If the shell is composed of cylindrical spines normal to the core surface then the scattering length density 
as a function of particle radius R falls off from the core/shell boundary as 1/R2. More generally if we 
propose a 1/Rh fall off then h may vary continuously from h =-2, the Hedgehog case, to a uniform shell 
h = 0.  (Note h >0 is meaningless !)  If the profile is approximated by a series of n linear sections (using 
MODEL 10, LTYP=11) then the contrast steps go as:         (ρ i - ρ j)=(ρ1 - ρn)(Ri

h - Rj
h)R1

-h   

In the constraint J,K,L,M,N & O are respectively for (ρ i - ρ j), R1, Ri, Rj, ∆ρ=(ρ1-ρn), and h.  To finish the 
series Rj for the last vertical step (which may be large) Rj must point to a zero (usually an extra MODEL 2 
line) and then we set 1/zero to zero.  Note that these constraints must come after the ones defining the set 
of radii Ri to be used. It is up to the user to keep the value of h in a valid range! (Bugs in derivatives fixed 
Nov 2005.) 

NCON=21 Same as NCON=16, contrast  for core/shell ellipse,  

but ignores V(K), allowing a free choice of shell thickness. 

NCON=22 V(J) = A*V(K)/(B + C*V(L) )               [used in double constraint for co-surfactant in shell] 
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NCON=23 Part of multiple constraints for oil & drug partitioning between core & shell of microemulsion, 

 needs 8 parameters & 4 constants (consult RKH). 

NCON=24 For core/shell/shell with polydisperse outer radius R3 & multiplicative constraints for R1 & R2. Finds  

R1/R3 =V(J) and R2/R3 =V(K) for uniform, fuzzy & exponential shells (model 10 1 or 10 11 or 10 21 or 10 31) 
given V(dry shell)/Vcore, X1 solvent fraction at R1, X2 solvent fraction at R2 and Y1= fraction of shell (e.g. 
polymer) in first shell (params L,M,N,O respectively) given V(P) is R1, V(P+2) is R2 and V(P+4) is R3. (uses 
iterative method after solving exactly for two uniform shells - consult RKH if in doubt or fails to work, 
added 8/2/2002, small bug fixed 29/10/02 ). 

NCON=25 V(J) = {V(K) - V(L)}*V(M) + {V(N) - V(O)}*V(P) + {V(Q) - V(R)}*V(S) 

METHOD- the least squares procedure requires the derivative of each calculated data point with respect to each refining 
parameter. If a particular parameter is constrained to others, then the derivatives for those others need to be modified by 
routine CONDER which does: 

 ∂I(Q)/∂V(i) = ∂I(Q)/∂V(i) + [∂V(J)/∂V(i)]*[∂I(Q)/∂V(J)]     for  i = K, L, M .... 

See Appendix E for further details.  Note if you are careful, constraints may be nested, the derivative modifications are 
done in reverse order to allow for this. 

 

MAKING CHANGES TO THE PROGRAM 

Addition of new models requires changing routines DERIV and CALCQ in FISHMODEL.FOR and routine DELSET in 
FISH4.  To understand how they work first study routine CALCQ which calculates I(Q) for a given Q.  Routine DERIV is 
more complex in that it calculates both I(Q) and its derivatives with respect to refining parameters dI(Q)/dV(J).  Wherever 
possible analytic expressions for derivatives are used, if this is not suitable then routine DELSET chooses the size of 
shifts for numerical calculation of the derivatives.  Options 31 and 32 in the FIT menu provide a useful route to help 
debug a new model or to test the calculation of derivatives.  For complex models it is advisable to write a separate 
program to generate some test data.  Graphics control is again long-winded but calls to local graphics routines are made 
ONLY by the routines LOCDEV, LOCAXIS, LOCGRAPH and LOCLIN.  These may easily be rewritten to suit a particular 
computer system. 

Fortran CHARACTER variables are so far only used in a few places for filenames. 

The program is split into a number of files at present, on some computers a library structure might be more appropriate.   

FISH1.FOR contains the main control routine, input of DATAFILE and simple processing of sets - QBIN, CENTRE, 
ARITH etc.   Has the SET routine which opens/closes data files and BLOCK DATA section. 

FISH2 contains graphics routines that call ONLY the routines in FISHGRAPH. 

FISHGRAPH has locally specific graphics routines. At RAL these now use UNIRAS, including a routine to write an 
abbreviated parameter table alongside a plot which may then be sent to a laser printer file. 

FISH3 has a second plot routine, for the least squares, plus some odds and ends.  

FISH4 file has the entire least squares fitting procedure with its FIT menu and interactive control routine TALK, also the 
constraints routines and derivative set up routine DELSET. 

FISHMODEL has the calculation routines DERIV and CALCQ containing the models.   

FISHSMEAR tackles smearing to allow for instrument resolution, MODEL 15. 

FISH5 contains only routines concerned with polydisperse small angle scattering including quadrature routines for 
numerical integration.   

FISH6 has routines peculiar to UEA & FRI Norwich for Vonk desmearing and some colloid calculations, it is not required 
by other people.   

FISH7 has the Hayter-Penfold and other charged particle structure factor routines. 

NOTE not all occurrences of a particular common block are identical, a list of parameters in one routine will frequently 
become an array in another routine, nor are they all the same lengths. 

Three "text" files are also required their location being determined in FISHPREF.TXT.  These files both define the 
commands used and contain the on-line HELP comments.  
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FISH_COMMANDS_MAIN.TXT    text file to define command language for main program 

FISH_COMMANDS_PLOT.TXT      "     "   "       "              "              "         "    FISH2 plotting 

FISH_HELP_FIT.TXT     help file for FIT routine commands in FISH4,  the actual commands are defined by BLOCK 
DATA section. in FISH1, and are difficult to add to or alter ! 

Since FISH2 of Oct 1999 all dependence on external mathematical libraries such as NAG, for either mathematical functions 
or numerical integration has been removed.  For detailed acknowledgements of the routines adopted or adapted for FISH 
see the Fortran source code. 

 

 

PLANNED CHANGES, KNOWN BUGS 

If RANGE is used to reduce the number of points being fitted the plot routines sometimes do not compensate properly 
and plot data previously stored in the excluded part of the array - please report any instance of this ! 

July 96 - Note that FISH’s calculation of β(Q) to correct S(Q) is rather limited in its applicability, see notes on page 10. 

Summer 97 - In some cases SMEARING does not work when refining - the shifts seem wrong, could be numerical 
integration problems at high Q ????  Needs test for other models. 

 

LOQ & FISH DATAFILE DEFINITION 

Each data set in FISH has arrays Q, C and E for ordinate, abscissa and error respectively.  The READ3 and READ2 
commands will read more general data, one set per file.  The LOQ & FISH file data format described below allows many 
sets of data per file.  The READ command in the main control section will read them sequentially, asking whether to skip 
or not until the correct one is found.  The file may also be rewound.  The file description was written with cards in mind 
(are you old enough to know about these?) so is tightly formatted.  However the main data format is actually read in, as 
a Fortran format as so almost any sensible ASCII character file from some other source can be read by the addtion of five 
header records, skipping original header/footer lines as necessary. 

Record Format     Contents 

(a) (20A4)  Title (include a date !) 

(b) (20A4)  second title 

(c) (6I5) NCH  number of channels (data) (max 512) 

  NC1 Number of first good data point 

  NC2 last good point before beam stop 

  NMC centre TIMES TEN ( so accurate to 0.1 channel) 

  NC3 first good point after beam stop 

  NC4 last good point after beam stop 

NOTE - for normal, ascending Q only use NC1=NC2=NMC=0  
NOTE - NCH does not have to equal NC4, "poor" data from the ends of the range may be carried around 
indefinitely, left in or out as desired by altering the NC's  

(d) (4I10) NSUM if <=0 total sum over NC1-NC2 plus NC3-NC4 stored here 

   which if this is > 10**8, then is divided by 10**6. 

  (IC(I),I=1,3)  monitor counts  
  ( You can use these four numbers for anything you like, they were originally used for Daresbury  
  X-ray data monitor counters.) 

(e)(I2,1X,19A4) IFLAG =1  only C( i=1,NCH ) data array to be read 

             =2  only (Q(i),C(i), i=1,NCH ) coordinate and data arrays to be read 

             =3  (Q(i),C(i),E(i), i=1,NCH ) coordinate, data and error arrays to be read 

  (FMT(I),I=1,19) character string containing data format  
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  This record might be: 3 ( 2(F12.7,2E17.5) ) 

(f) (FMT)- using fortran format as read at (e)    Actual data. 
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LSQFILE (MODEL FILE) FORMAT 

This file may contain a number of model descriptions and is read sequentially in the same way as the DATAFILE.  If the 
model was generated using the FF command in the interactive FIT routine then it will contain exact parameter values to 
enable the calculation to be repeated at a later date. Estimated standard deviations are also included for reference, 
though these are not of course required as input. These and other non-necessary parameters are included in brackets 
below. Other control records decide the sort of fitting procedure to be followed and whether any of the parameters are 
fixed or constrained in some way. 

Records for each model description, with their FORTRAN input formats and variable names are as follows: 

(i) ( 5(2X,I3) ) NT number of title records (max 4) 

  NP number of parameter records (max 64, 40 refining) 

  (NS) number of data sets - see (v) (max 3) 

  NC number of constrained parameters - see (vi) (max 6) 

  NN number of numerical constants - see (vii) (max 24) 

 

(ii) ( 17(3X,I2) ) IW weight function  0 - unit weights,  1- 1/(error2), 2-  1/data     (K1=0 or 1 or 2  in interactive FIT) 

  IK type of fit 0 - normal least squares 

    1 - Marquardt method     (K2=0 or K2=1 in interactive FIT) 

  IP 1- include predicate observations, 0- none 

  MS miss data, use every MS’th point in earlier cycles of slow calculations (use  K4=n  in FIT). 

  (IY) used internally 1- polydisperse refining 

The following four integers were removed from the program in April 1993, when a more general set up for 
numerical integration schemes was introduced.  So now use  K6 = 1 or K7=1 to re-initialise all integration 
schemes. Nov. 2000 version introduced K8=1 to exclude β(Q) correction to S(Q).  For compatibility with 
older data sets this is ignored on input (FISH gives a reminder) so will have to be set again in FIT. 

  (ignored - was METH was model 6 Q) 

  (ignored - was METH2 was model 6 , R) 

  (XB set 1 to exclude β(Q) correction to S(Q)) 

  (ignored - was METHELL) 

  (LS(1)...LS(4)) spare- used by POLCAL etc. 

  (NPRED) number of predicate observations 

  (NDAT) number of normal observations 

  (NYC) cycle or iteration number 

  (NPR) number of refining parameters 

 (iii) (80A1) ((LCOM(I,J)),I=1,80),J=1,NT), NT title records 

 (iv) (3I3,3A4,E14.6,E13.3,F6.1,E10.2) Model description records for each of NP  

  parameters, see next section for how to use them: 

  (I) running number 1...NP on output 

  LM(i) model number 

  LTYP(i) parameter number 

  LPAR(J,i),J=1,3 label for parameter 

  V(i) value of parameter 

  (ESD(i)) standard deviation on output 
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  PS(i) "partial shift" this is  

   0.0 if parameter is fixed 

   >0.0 if parameter is refining, calculated shifts are multiplied by this value  
    - helps convergence in poorly conditioned cases. 

   -1.0 if parameter is constrained or tied. 

   -2.0 for the polydisperse radius in a complex contrast, see MODEL 10. 

(v) NS records are skipped on input, have details of data sets on output 

(vi) NC constraint records - see section above on CONSTRAINTS. 

(vii) (8E10.3) (CON(I),I=1,NN)   NN numerical constants:  

  CON(1) for MARQUARDT fit lambda, λ parameter . 

  CON(2) & CON(3) used by MODEL 5 for V0 and σr/rbar.  

  CON(4) & CON(5) used by MODEL 6 for ∆r in Simpson rule integration and as an upper limit for  
  particle radius, rmax.  NOTE remember to set these if using MODEL 6 polydispersity ! 

  CON(6) & CON(7) used by models 5 & 6 for calculated entropy and estimator B - see MODEL 5. 
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APPENDIX A - AN EXAMPLE DATA FILE 

The file below was written out by COLETTE ready for input to FISH, it has been reduced to 6 data points, 
the third record has been edited by the user so that only points 2-4 are to be used in FISH.  The 3 in the fith 
record shows that Q, I(Q) & error(Q) are expected, using the format shown. 

LOQ Wed 18-MAY-1988 15:21  SAMPLE:   714     EMPTY CAN:   749 

lambda  2.20 10.00   Phi  -90. >   90. deg   Radii  35.0 335. 

    0   6    0    0    0    2    4  

        0         0         0         0          

 3 (F12.5,2E16.6) 

     0.00562    1.664269E+01    1.182694E-01 

     0.00607    1.018861E+01    6.170455E-01 

     0.00655    4.091472E+00    3.789476E-01 

     0.00707    4.746222E+00    4.646616E-01 

     0.00865    6.092464E+00    2.959473E-01 

     0.00947    8.743887E+00    2.343611E-01 

 

 

APPENDIX B - AN EXAMPLE MODEL FILE - LSINP.DAT 

This example file contains three separate models:  (i) a single spherical particle plus background, note that 
only the constant term in the cubic backg round is being used to give a flat background addition. 

(ii) polydisperse spheres with R-1.5 size distribution defined by Rmid= 60 and width lambda =0.5.  The 
lambda and R-MID parameters 5 & 6 do not do anything directly so are MODEL 2; they are related to R1 and 
R2 via the two constraints. Again a flat background is included. 

(iii) similar polydisperse spheres interacting via a hard spheres structure factor.  The hard sphere radius and 
volume fraction have partial shifts of 0.4 in order to damp their changes.  Instrument resolution smearing is 
also added. The label field is entirely optional, the calculation is controlled by the MODEL and LTYP 
numbers in the second and thid columns. 

As a reminder the main columns are (note the running count number is ignore d on input): 

Running Model LTYP(i) Label Parameter  ESD      Partial  Calc  
count   number              Value V()           shift    shift 
 i                                              On/Off  
 I3     I3    I3       A12  E14.6      E13.3    F6.1      E10.2 
 T  1 P  6 S  0 C  0 N  0 
 W  1 K  0 IP 1 MS 1 IY 1 Q  7 R  7    6    1 
   SINGLE SPHERE PLUS BKG 
  1  1  1 C1           1.842795E-04    5.014E-06   1.0  4.96E-08 
  2  1  2 R1           1.000000E 02    0.000E+00   1.0  0.00E+00 
  3  3  1 BKG A        9.848869E-02    1.601E-02   1.0  2.20E-05 
  4  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
  5  3  3     C*Q**2   0.000000E+00    0.000E+00   0.0  0.00E+00 
  6 99  1    SCALE     1.000000E+00    0.000E+00   0.0  0.00E+00 
 T  1 P 10 S  1 C  2 N  5 
 W  1 K  0 IP 1 MS 1 IY 1 Q  7 R  7    6    1 
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  POLY DISP SPHERES PLUS BKG    CONSTRAINED TO FIT RM AND LAM              
  1  6 81 R**N VOL     1.842795E-04    5.014E-06   1.0  4.96E-08 
  2  6  2 R2-R1        7.326303E+01    0.000E+00  -1.0  0.00E+00 
  3  6  3 R1           2.997124E+01    0.000E+00  -1.0  0.00E+00 
  4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
  5  2  1 LAMBDA       5.000000E-01    0.000E+00   0.0  0.00E+00 
  6  2  2    R-MID     6.000000E+01    4.136E-01   1.0  2.46E-03 
  7  3  1 BKG A        9.848869E-02    1.601E-02   1.0  2.20E-05 
  8  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
  9  3  3     C*Q**2   0.000000E+00    0.000E+00   0.0  0.00E+00 
 10 99  1    SCALE     1.000000E+00    0.000E+00   0.0  0.00E+00 
   1  1 2114.SUB     CALC 2 BKG 3 POL 4  SSE= 3.898E+01 
   3   2   5   6   0 
   0.00000   0.00000   0.00000   0.00000 
   4   3   5   6   0 
   0.00000   0.00000   0.00000   0.00000 
 1.000E-01 1.843E-04 3.112E-01 2.000E+00 1.032E+02 
T  1 P 14 S  1 C  2 N  5 
 W  1 K  0 IP 1 MS 1 IY 1 Q  7 R  7    6    1  
  (POLY DISP SPHERES)*HSS(Q)    CONSTRAINED TO FIT RM AND LAM              
  1  6 81 R**N VOL     1.842795E-04    5.014E-06   1.0  4.96E-08 
  2  6  2 R2-R1        7.326303E+01    0.000E+00  -1.0  0.00E+00 
  3  6  3 R1           2.997124E+01    0.000E+00  -1.0  0.00E+00 
  4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
  5  2  1 LAMBDA       5.500000E-01    0.000E+00   0.0  0.00E+00 
  6  2  2    R-MID     6.660275E+01    4.136E-01   1.0  2.46E-03 
  7 22  1 HS S(Q) VOL  1.854555E-01    1.444E-02   0.4 -4.55E-05 
  8 22  2 SPH RADIUS   1.351837E+02    2.197E+00   0.4  2.26E-01 
  9  3  1 BKG A        9.848869E-02    1.601E-02   1.0  2.20E-05 
 10  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
 11  3  3     C*Q**2   0.000000E+00    0.000E+00   0.0  0.00E+00 
 12 15  1 SMEAR        1.000000E+00    0.000E+00   0.0  0.00E+00 
 13 15  2 NSIMP        2.100000E+01    0.000E+00   0.0  0.00E+00 
 14 99  1    SCALE     1.000000E+00    0.000E+00   0.0  0.00E+00 
   1  1 2114.SUB     CALC 2 BKG 3 POL 4  SSE= 3.898E+01 
   3   2   5   6   0 
   0.00000   0.00000   0.00000   0.00000 
   4   3   5   6   0 
   0.00000   0.00000   0.00000   0.00000 
 1.000E-01 1.843E-04 3.112E-01 2.000E+00 1.032E+02 
 

 

APPENDIX C - SPECIAL MODELS FOR 2-SHELL ELLIPSOID 

MODEL 24 with LTYP(1)=21 or 31 are for swollen micellar systems with either constant ratios of inner and 
outer radii or constant outer shell thickness respectively. The standard model is entirely reparametrised 
using most of the numerical constant CON() array to store physical parameters.  [ Note this precludes the 
use of polydisperse spheres or other models using the CON() array, though the CON() here could easily be 
moved if required.] 

The model assumes a surfactant micelle in water where the surfactant has a hydrocarbon tail. The head 
group/water interface may be "staggered", thereby including some of the surfactant tails in the "head 
group" region. This is controlled by ALF.  One terminal CH3 group is always assumed to be in the core ( 
compare CON(2&3) with CON(15&16).  Oil may be added to the core region via CON(22-24). 
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LTYP=21 or 31 SCALE  

            2    AGG aggregation number, number of surfactant molecules per micelle 

            3    X  axial ratio (if LTYP(1)=21 ) is not used if LTYP(1)=31 when shell thickness δ is 
calculated  
   in CON(19) [Check this, I'm not sure !] 

           4   Charge 

           5    ALF fraction of CH2 chain groups in core ( α ) 

SCALE = (ρ2 - ρ3)2VT2N       where number density of micelles  N = [conc-cmc]NA/(agg. no.) 

and SCALE has units of cm-1.  The fitted value of this parameter should agree with the 
expected value in CON(17), if all the conversions to absolute units are correct ! 

This model makes extensive use of the numerical constants array, so it may be incompatible 
with some other models. 

CON(1)=N1 Marquardt lambda, as usual 

         2  CH3 volume, Å3 

         3  Σbi  CH3,  in units of 10-12cm 

         4  head group volume, Å3 

         5  Σbi headgroup,  scattering length in units of 10-12cm 

         6  hydration number headgroup 

         7  counterion volume, Å3 

         8  Σbi counterion,   in units of 10-12cm 

         9  counterion hydration number 

       10  solvent volume, Å3 

       11  Σbi solvent,  in units of 10-12cm 

       12  scattering length density of solvent, ρ3, Å-2 

       13  [conc-cmc] surfactant, mol/litre 

       14  NA, Avogadro's number.10-19= 6.0235x104 

       15  (CH2)m-1 volume, Å3 

       16  Σbi  "        in units of 10-12cm 

------------------------------------------- 

       17  expected scale in cm-1  17-21 are calculated by the program 

       18  R1,  Å 

       19  R2  or  δ 

       20  ρ1,  Å-2 
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       21  ρ2 

------------------------------------------- 

       22  [oil], concentration of solubilised oil, mol/litre,  
   note  Noil per micelle = aggregation number.[oil]/[conc-cmc] 

       23  oil volume, Å3 

       24  Σbi oil,  cm 

These parameters are used by routine AGGRE to calculate the normal parameters to pass to the routines for 
two-shell ellipsoids ELLSH1 and ELLSH2. 

Guides to use:   ALWAYS check CON(17)-CON(21) to see if their values are reasonable. 

CON(17) should agree ( say within 20%) with the refining SCALE parameter, assuming the absolute units are 
correct. 

CON(18), R1 or R1.X, should be less than the fully stretched tail, unless extra oil is present.  

The calculation proceeds by calculating the volume of the inner core: 

  V1 = ( VCH3 + ALF.VCH2(m-1) ).AGG 

Inner radius    R1 = ( 3V1/4πX)1/3 

Total volume of a micelle VT = [ Vchain + Vhead group + Vion + 

    Vsolvent.(hydration number of head group + hydration number of ion ) ].AGG  -  

   ( Vion + Vsolvent.(hydration number ion) ).CHARGE 

The value of R2 (LTYP(1)=21) is given by   VT = (4π/3)R2
3X 

Shell thickness δ ( LTYP(1)=31) is given by    VT = (4π/3)(R1+δ)2(R1X + δ) so δ is the only positive solution 
of: 

  δ3 + R(X+2)δ2 + R2(2X+1)δ - 3( VT -V1)/4π = 0 

Knowing V1and V2 and the scattering lengths the program calculates ρ1 and ρ2 and the coefficient of 
j1(u1)/u1. Adding oil makes the above equations a little more complicated. 

 
 
APPENDIX D - AN EXAMPLE INTERACTIVE SESSION 
Input typed by the user is underlined, text in [square brackets] are explanatory comments added later.  

$@runfish 
Welcome to the FISH data analysis program, enter HELP  
         after  Command>   if you are lost. 
         please type commands using only UPPER CASE 
Command> READ 2658.Q 
    [ start sequential reading of data file] 
DATA INPUT ROUTINE, READS FROM FORTRAN STREAM NO. 1 
UP TO 9 SETS ("WORKSPACES") MAY BE USED 
ENTER 0 (RETURN) TO IGNORE, OVERWRITES PREVIOUS SET OF SAME NO. 
91 TO REWIND,  99 TO STOP,  95 TO SEARCH  
 LOQ Mon 22-MAY-1989 16:42SAMPLE:  2658     EMPTY CAN:  2646                     
 
 Lambda  2.00 10.00 Phi  -90. >   90. deg Radii  35.0 335.0                      
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SAVE AS SET NO. = ? 1 
                          [ lets keep this data as set number 1 ] 
 ENTER LOCAL LABEL FOR THIS SET  (A11)= 2658 
3 (F12.5,2E16.6)                                                               
 LOQ Mon 22-MAY-1989 16:42SAMPLE:  2658     EMPTY CAN:  2646                     
Lambda  2.00 10.00 Phi  -90. >   90. deg Radii  35.0 335.0                      
SAVE AS SET NO. = ? 99     [ get out of the input loop ] 
                           [ lets try to fit the data ...] 
Command> FIT 
1-READ MODEL FILE              4-CALC ONLY, CHOOSE Q 
2-CHOOSE OBS,CALC SETS ETC.    5-INDEX 
3-ENTER FIT ROUTINE            6-RETURN TO MAIN ROUTINE 
1 
   [ start to read model file LSINP.DAT ] 
LSQIN READS MODEL DESCRIPTION FILE FROM FORTRAN STREAM 3 
ENTER 0-TO IGNORE, 1-USE THIS MODEL, 9-REWIND 
 Gaussian coil         [prints first 4 record of each model in file] 
 for polymers                                                                   
 1 14  1 Const        3.500000E+02    0.000E+00   0.4  0.00E+00 
 2 14  2 Rg           7.500000E+01    0.000E+00   0.4  0.00E+00 
 3  3  1 BKG A        5.000000E+00    0.000E+00   0.4  0.00E+00 
 4  3  2   B*Q        0.000000E+00    0.000E+00   0.0  0.00E+00 
USE=   [pressed return to enter zero, and read next model] 
 
  SINGLE SPHERE PLUS BKG                                                        
 1  1  1 C1           1.842795E-04    5.014E-06   1.0  0.00E+00 
 2  1  2 R1           1.000000E+02    0.000E+00   1.0  0.00E+00 
 3  3  1 BKG A        9.848869E-02    1.601E-02   1.0  0.00E+00 
 4  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
USE=0 
 
  POLY DISP SPHERES PLUS BKG    CONSTRAINED TO FIT RM AND LAM                   
 1  6 81 R**N VOL     1.842795E-04    5.014E-06   1.0  0.00E+00 
 2  6  2 R2-R1        7.326303E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           2.997124E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
USE=1   [use this model and get out of input loop] 
 
1-READ MODEL FILE              4-CALC ONLY, CHOOSE Q 
2-CHOOSE OBS,CALC SETS ETC.    5-INDEX 
3-ENTER FIT ROUTINE            6-RETURN TO MAIN ROUTINE 
2                       [now proceed around the main fit menu ] 
NO. OF SETS OF DATA TO FIT ( MAX 3, (I1) ) = 1 
 
                           ENTER DATA SET numbers for: 
                          OBS  observations i.e. data to be fitted. 
                          CALC for results of model calculation. 
                          BKG  if you are about to use experimental 
                              subtraction, model 4, ( WORK is ALSO 
required !) 
                          POLY is needed for polydispersity e.g. for 
model 6 
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                          WORK is for polynomial background, model 3, 
                              and/or observed background model 4, which 
are not 
                              smeared so are kept separate. 
                          UNSMEARED optional to save unsmeared when 
smearing. 
                          P(Q) optional to save form factor separately. 
                          S(Q) optional to save structure factor 
separately. 
                          BETA(Q) optional beta ratio for polydisperse. 
                          DEBUG(Q) optional for anything else ! 
                          Enter zeroes (spaces) for sets not required. 
 
OBS, CALC, BKGD, POLY, WORK, UMSMEARED, P(Q), S(Q), BETA(Q), BUG(Q) 
 ENTER SET NUMBERS FOR EACH (10I1) 
1203456780   [ decides which data set to fit and where to store the output ] 
 
REFINING  1 SETS   OBS CAL BKG PLY WRK USM  PQ  SQ BET DBG 
      2658          1   2   0   3   4   5   6   7   8   0 
1-READ MODEL FILE              4-CALC ONLY, CHOOSE Q 
2-CHOOSE OBS,CALC SETS ETC.    5-INDEX 
3-ENTER FIT ROUTINE            6-RETURN TO MAIN ROUTINE 
3 
FITTING/CALCULATION ROUTINE, TYPE PP TO SEE THE MODEL, 
RUN TO CALCULATE, HELP FOR A LIST OF COMMANDS 
>  
PP   [look at whole model ] 
T  1 P 10 S  1 C  2 N  5 
W  1 K  0 IP 1 MS 1 IY 1 Q -6 R -6  -11  -11    1    0    2    0    0    
0    0 
  POLY DISP SPHERES PLUS BKG    CONSTRAINED TO FIT RM AND LAM                   
 1  6 81 R**N VOL     1.842795E-04    5.014E-06   1.0  0.00E+00 
 2  6  2 R2-R1        7.326303E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           2.997124E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.000000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     6.000000E+01    4.136E-01   1.0  0.00E+00 
 7  3  1 BKG A        9.848869E-02    1.601E-02   1.0  0.00E+00 
 8  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
 9  3  3     C*Q**2   0.000000E+00    0.000E+00   0.0  0.00E+00 
10 99  1    SCALE     1.000000E+00    0.000E+00   0.0  0.00E+00 
  1  1 2658         CALC 2 BKG 0 POL 3  SSE= 0.000E+00 
CONSTRAINT  1 TYPE  3 USE= 1 
V(  2 ) = 2.0* V(  5 ) * V(  6 )   R2-R1=2*L *RM 
 
CONSTRAINT  2 TYPE  4 USE= 1 
V(  3 ) = (1.0- V(  5 ) )* V(  6)   R1=(1-L)*RM 
 
1.000E-01 1.843E-04 3.112E-01 2.000E+00 1.032E+02 
>R   [ R for RUN to start fitting, FISH first asks for 
    integration scheme numbers, we enter -11 to test] 
INTEGRATION SCHEME FOR I(Q) K6 =  (*) 
( 0-7, -VE TO LIST WEIGHTS, -11 TO TEST ALL, SET K6<0 TO GET HERE ) 
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-11 
TEST AT Q= ?  (*) 
.1 
     Method     F**2(Q)        F(Q)          SUMX 
  0  SIMPSON     2.284441E+13 -8.243047E+07  1.210804E+04 
  1  GAUSS  4    1.850529E+13 -8.009058E+07  1.210425E+04 
  2  GAUSS 10    2.285260E+13 -8.242504E+07  1.210481E+04 
  3  RT+LN 10    2.285226E+13 -8.242519E+07  1.210481E+04 
  4  GEN   10    2.279486E+13 -8.242452E+07  1.210480E+04 
  5  GAUSS 16    2.285261E+13 -8.242503E+07  1.210481E+04 
  6  GAUSS 32    2.285261E+13 -8.242500E+07  1.210481E+04 
  7  GAUSS 64    2.285261E+13 -8.242500E+07  1.210481E+04 
INTEGRATION SCHEME FOR I(Q) K6 =  (*) 
( 0-7, -VE TO LIST WEIGHTS, -11 TO TEST ALL, SET K6<0 TO GET HERE ) 
7 
INTEGRATION SCHEME FOR MOMENTS OF P(R), K7= (*) 
-11 
  0  SIMPSON   V=  6.8530E+09 SIG*2=  1.7402E+02 RBAR=  4.7706E+01 
               ENT=  3.8283E+00 
  1  GAUSS  4  V=  6.8504E+09 SIG*2=  1.7389E+02 RBAR=  4.7704E+01 
               ENT=  1.0824E+00 
  2  GAUSS 10  V=  6.8529E+09 SIG*2=  1.7402E+02 RBAR=  4.7706E+01 
               ENT=  1.9536E+00 
  3  RT+LN 10  V=  6.8529E+09 SIG*2=  1.7402E+02 RBAR=  4.7706E+01 
               ENT=  1.7930E+00 
  4  GEN   10  V=  6.8529E+09 SIG*2=  1.7402E+02 RBAR=  4.7706E+01 
               ENT=  1.5818E+00 
  5  GAUSS 16  V=  6.8529E+09 SIG*2=  1.7402E+02 RBAR=  4.7706E+01 
               ENT=  2.4080E+00 
  6  GAUSS 32  V=  6.8529E+09 SIG*2=  1.7402E+02 RBAR=  4.7706E+01 
               ENT=  3.0869E+00 
  7  GAUSS 64  V=  6.8529E+09 SIG*2=  1.7402E+02 RBAR=  4.7706E+01 
               ENT=  3.7725E+00 
INTEGRATION SCHEME FOR MOMENTS OF P(R), K7= (*) 
7   [now it continues with proper calc] 
 POLYDISPERSE R=  3.00E+01 TO  9.00E+01  N=   1 TO  31 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  9.00E+01 
 PMIN= 3.803E-14 PMAX= 1.250E-11 ENT= 3.773E+00 B=N(7)= 0.000E+00 
 VNORM= 1.84280E-04  SIG(R)/RB= 2.7652E-01  SIG**2= 1.7402E+02 
 RBAR= 4.7706E+01  AREA P(R)= 3.2551E-10 
WEIGHT FUNCTION TYPE (K1=)   1,   IF K1=1, WTS = 1/SIGMA**2 , OTHERWISE 
UNIT  
WTS 
CYC  1   49 DATA+ 0 PRED,  3 PAR  SWSE= 9.256E+03 XDWE= 9.171E+03 VAR=  
1.928E+02 
>1 6   [ look at first 6 parameters] 
 1  6 81 R**N VOL     1.842795E-04    1.789E-04   1.0 -8.65E-05 
 2  6  2 R2-R1        6.000000E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           3.000000E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.000000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     6.000000E+01    1.238E+01   1.0  2.57E+01 
>R   [ run another cycle] 
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 POLYDISPERSE R=  4.28E+01 TO  1.28E+02  N=   1 TO  43 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.28E+02 
 PMIN= 7.315E-15 PMAX= 1.656E-12 ENT= 3.765E+00 B=N(7)= 0.000E+00 
 VNORM= 9.77584E-05  SIG(R)/RB= 2.7495E-01  SIG**2= 3.4823E+02 
 RBAR= 6.7872E+01  AREA P(R)= 6.0102E-11 
CYC  2   49 DATA+ 0 PRED,  3 PAR  SWSE= 1.068E+04 XDWE= 1.060E+04 VAR=  
2.226E+02  [ fit even worse] 
>P 
 1  6 81 R**N VOL     9.775841E-05    2.330E-04   1.0  9.46E-04 
 2  6  2 R2-R1        8.566107E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           4.283054E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.000000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     8.566107E+01    3.213E+01   1.0 -8.31E+01 
 7  3  1 BKG A        1.364664E+00    6.109E-01   1.0  4.34E-02 
 8  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
 9  3  3     C*Q**2   0.000000E+00    0.000E+00   0.0  0.00E+00 
10 99  1    SCALE     1.000000E+00    0.000E+00   0.0  0.00E+00 
> 6=F=0.4  [ damp down shifts on V6 and V1 as they are moving too much ] 
 6  2  2    R-MID     8.566107E+01    3.213E+01   0.4 -8.31E+01 
> 1=N=0.4 
 1  6 81 R**N VOL     9.775841E-05    2.330E-04   0.4  9.46E-04 
>R 
 POLYDISPERSE R=  2.62E+01 TO  7.86E+01  N=   1 TO  27 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  7.86E+01 
 PMIN= 2.675E-13 PMAX= 5.451E-11 ENT= 3.776E+00 B=N(7)= 0.000E+00 
 VNORM= 4.75972E-04  SIG(R)/RB= 2.7726E-01  SIG**2= 1.3389E+02 
 RBAR= 4.1735E+01  AREA P(R)= 1.2544E-09 
CYC  3   49 DATA+ 0 PRED,  3 PAR  SWSE= 3.971E+03 XDWE= 3.355E+03 VAR=  
8.273E+01 
>1 7 
 1  6 81 R**N VOL     4.759722E-04    1.121E-04   0.4 -5.99E-04 
 2  6  2 R2-R1        5.240216E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           2.620108E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.000000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     5.240216E+01    2.821E+00   0.4  1.28E+01 
 7  3  1 BKG A        1.408045E+00    3.879E-01   1.0  3.27E-02 
>R 
 POLYDISPERSE R=  2.88E+01 TO  8.63E+01  N=   1 TO  29 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  8.63E+01 
 PMIN= 1.426E-13 PMAX= 1.888E-11 ENT= 3.774E+00 B=N(7)= 0.000E+00 
 VNORM= 2.36320E-04  SIG(R)/RB= 2.7674E-01  SIG**2= 1.6032E+02 
 RBAR= 4.5753E+01  AREA P(R)= 4.7304E-10 
CYC  4   49 DATA+ 0 PRED,  3 PAR  SWSE= 3.888E+03 XDWE= 3.723E+03 VAR=  
8.099E+01 
> PLOT   [ still getting nowhere, do a plot to see fit] 
 PLOT CONTROLS  IDEV= 0-EXIT, 1-screen, 2-file  
error bars are IEB*sigma (ONLY USE ON LINEAR PLOT ) 
IPW=1 adds scaled wts 
IDEL spreads graphs apart (IDEL=2 is default) 
     IDEV,IEB,IPW,IDEL =        (5I1)  
11 
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 OVER-PLOT P(Q)  ?  ( LTYP,LSYM (2I1) )  [return to enter zero] 
 OVER-PLOT RESCALED S(Q)  ? ( LTYP,LSYM (2I1) )  
 OVER-PLOT RESCALED BETA(Q)  ? ( LTYP,LSYM (2I1) )  
SUBTRACT BACKGROUND ("WRK",MODELS 3&4) ? (ANS 1)  
 
       AUTO      CHOICE  
X1   0.000E+00 0.000E+00 
X2   2.258E-01 2.258E-01 
Y1  -7.411E+02-7.411E+02 
Y2   8.725E+02 8.725E+02 
 
AXES  1-AUTO, 2-U CHOOSE, 3-USE CHOICE, 0-RETURN ?  1 
TITLE ?    [return to enter zero] 
 
[you may be asked to check plot device type, plot appears on screen, lousy fit to data, try another model ] 
 
 PLOT CONTROLS  IDEV= 0-EXIT, 1-screen, 2-file  
error bars are IEB*sigma (ONLY USE ON LINEAR PLOT ) 
IPW=1 adds scaled wts 
IDEL spreads graphs apart (IDEL=2 is default) 
     IDEV,IEB,IPW,IDEL =        (5I1)   [return to get out of plot] 
 
TALK ROUTINE 
>STOP 
DID YOU REMEMBER TO PF AND FF ? ,NOW SAVE CALC SETS 
 
 
1-READ MODEL FILE              4-CALC ONLY, CHOOSE Q 
2-CHOOSE OBS,CALC SETS ETC.    5-INDEX 
3-ENTER FIT ROUTINE            6-RETURN TO MAIN ROUTINE 
1   [ continue reading model file] 
LSQIN READS MODEL DESCRIPTION FILE FROM FORTRAN STREAM 3 
ENTER 0-TO IGNORE, 1-USE THIS MODEL, 9-REWIND 
 (POLY DISP SPHERES)*HSS(Q)    CONSTRAINED TO FIT RM AND LAM                    
 1  6 81 R**N VOL     1.842795E-04    5.014E-06   1.0 -2.22E-04 
 2  6  2 R2-R1        7.326303E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           2.997124E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
USE=1   [ use this one, same as before but with hard sphere structure factor added] 
1-READ MODEL FILE              4-CALC ONLY, CHOOSE Q 
2-CHOOSE OBS,CALC SETS ETC.    5-INDEX 
3-ENTER FIT ROUTINE            6-RETURN TO MAIN ROUTINE 
3 
>P 
 1  6 81 R**N VOL     1.842795E-04    5.014E-06   1.0 -2.22E-04 
 2  6  2 R2-R1        7.326303E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           2.997124E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.500000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     6.660275E+01    4.136E-01   1.0  2.30E+01 
 7 22  1 HS S(Q) VOL  1.854555E-01    1.444E-02   1.0 -6.66E-02 
 8 22  2 SPH RADIUS   1.351837E+02    2.197E+00   0.4  0.00E+00 
 9  3  1 BKG A        9.848869E-02    1.601E-02   1.0  0.00E+00 
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10  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
11  3  3     C*Q**2   0.000000E+00    0.000E+00   0.0  0.00E+00 
12 15  1 SMEAR        1.000000E+00    0.000E+00   0.0  0.00E+00 
13 15  2 NSIMP        2.100000E+01    0.000E+00   0.0  0.00E+00 
14 99  1    SCALE     1.000000E+00    0.000E+00   0.0  0.00E+00 
> OFF   [ trick to zero the shifts column] 
> ON 
> R 
 POLYDISPERSE R=  3.00E+01 TO  1.03E+02  N=   1 TO  37 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.03E+02 
 PMIN= 3.686E-14 PMAX= 7.843E-12 ENT= 3.768E+00 B=N(7)= 0.000E+00 
 VNORM= 1.84280E-04  SIG(R)/RB= 3.1124E-01  SIG**2= 2.5661E+02 
 RBAR= 5.1469E+01  AREA P(R)= 2.4582E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC  5   49 DATA+ 0 PRED,  5 PAR  SWSE= 9.930E+03 XDWE= 9.916E+03 VAR=  
2.159E+02 
>1 9 
 1  6 81 R**N VOL     1.842795E-04    2.491E-04   1.0  1.32E-04 
 2  6  2 R2-R1        7.326303E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           2.997124E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.500000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     6.660275E+01    1.813E+01   1.0  1.40E+01 
 7 22  1 HS S(Q) VOL  1.854555E-01    7.833E-01   1.0 -2.72E-01 
 8 22  2 SPH RADIUS   1.351837E+02    1.690E+02   0.4 -4.32E+01 
 9  3  1 BKG A        9.848869E-02    6.262E-01   1.0  1.21E+00 
> R 
 POLYDISPERSE R=  3.63E+01 TO  1.25E+02  N=   1 TO  45 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.25E+02 
 PMIN= 1.665E-14 PMAX= 6.382E-12 ENT= 3.764E+00 B=N(7)= 0.000E+00 
 VNORM= 3.15856E-04  SIG(R)/RB= 3.1045E-01  SIG**2= 3.7255E+02 
 RBAR= 6.2173E+01  AREA P(R)= 2.3933E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC  6   49 DATA+ 0 PRED,  5 PAR  SWSE= 3.126E+03 XDWE= 3.080E+03 VAR=  
6.795E+01 
>1 9 
 1  6 81 R**N VOL     3.158562E-04    1.902E-04   1.0  5.24E-04 
 2  6  2 R2-R1        8.866681E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           3.627278E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.500000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     8.060619E+01    9.750E+00   1.0 -1.46E+01 
 7 22  1 HS S(Q) VOL -8.685419E-02    1.518E-01   1.0  1.32E-01 
 8 22  2 SPH RADIUS   1.179190E+02    1.564E+02   0.4  5.50E+01 
 9  3  1 BKG A        1.306350E+00    3.447E-01   1.0  2.15E-02 
>R 
 POLYDISPERSE R=  2.97E+01 TO  1.02E+02  N=   1 TO  37 
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 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.02E+02 
 PMIN= 1.232E-13 PMAX= 3.711E-11 ENT= 3.768E+00 B=N(7)= 0.000E+00 
 VNORM= 8.40031E-04  SIG(R)/RB= 3.1128E-01  SIG**2= 2.5185E+02 
 RBAR= 5.0983E+01  AREA P(R)= 1.1528E-09 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC  7   49 DATA+ 0 PRED,  5 PAR  SWSE= 8.133E+03 XDWE= 8.118E+03 VAR=  
1.768E+02 
>1 9   [ the fit OUGHT to converge as XDWE is same as SWSE] 
 1  6 81 R**N VOL     8.400314E-04    2.212E-04   1.0 -5.39E-04 
 2  6  2 R2-R1        7.256344E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           2.968504E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.500000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     6.596676E+01    3.524E+00   1.0  3.24E+00 
 7 22  1 HS S(Q) VOL  4.478095E-02    1.780E-01   1.0  2.13E-02 
 8 22  2 SPH RADIUS   1.399234E+02    2.009E+02   0.4 -5.90E+01 
 9  3  1 BKG A        1.327847E+00    5.664E-01   1.0 -2.61E-02 
> 1=N=.5  [ damp down V1 which is oscillating] 
 1  6 81 R**N VOL     8.400314E-04    2.212E-04   0.5 -5.39E-04 
>R 
 POLYDISPERSE R=  3.11E+01 TO  1.07E+02  N=   1 TO  39 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.07E+02 
 PMIN= 4.870E-14 PMAX= 2.092E-11 ENT= 3.767E+00 B=N(7)= 0.000E+00 
 VNORM= 5.70646E-04  SIG(R)/RB= 3.1107E-01  SIG**2= 2.7650E+02 
 RBAR= 5.3456E+01  AREA P(R)= 6.7962E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC  8   49 DATA+ 0 PRED,  5 PAR  SWSE= 2.685E+02 XDWE= 2.487E+02 VAR=  
5.836E+00 
> 1 9 
 1  6 81 R**N VOL     5.706458E-04    4.494E-05   0.5 -1.47E-04 
 2  6  2 R2-R1        7.612236E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           3.114096E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.500000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     6.920214E+01    1.101E+00   1.0  2.25E+00 
 7 22  1 HS S(Q) VOL  6.605905E-02    3.671E-02   1.0  4.61E-02 
 8 22  2 SPH RADIUS   1.163301E+02    2.390E+01   0.4  3.97E+00 
 9  3  1 BKG A        1.301789E+00    1.027E-01   1.0 -2.45E-03 
> R 
 POLYDISPERSE R=  3.22E+01 TO  1.11E+02  N=   1 TO  40 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.11E+02 
 PMIN= 4.823E-14 PMAX= 1.610E-11 ENT= 3.766E+00 B=N(7)= 0.000E+00 
 VNORM= 4.97388E-04  SIG(R)/RB= 3.1093E-01  SIG**2= 2.9429E+02 
 RBAR= 5.5172E+01  AREA P(R)= 5.3890E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
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NOTE for debug purposes, non-smeared calc is in SET 5 
CYC  9   49 DATA+ 0 PRED,  5 PAR  SWSE= 6.053E+01 XDWE= 4.033E+01 VAR=  
1.316E+00 
> 1 
 1  6 81 R**N VOL     4.973885E-04    2.178E-05   0.5  1.52E-05 
>R 
 POLYDISPERSE R=  3.23E+01 TO  1.11E+02  N=   1 TO  40 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.11E+02 
 PMIN= 5.800E-14 PMAX= 1.606E-11 ENT= 3.766E+00 B=N(7)= 0.000E+00 
 VNORM= 5.05004E-04  SIG(R)/RB= 3.1091E-01  SIG**2= 2.9691E+02 
 RBAR= 5.5421E+01  AREA P(R)= 5.3984E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC 10   49 DATA+ 0 PRED,  5 PAR  SWSE= 4.341E+01 XDWE= 2.320E+01 VAR=  
9.438E-01 
> 1=N 
 1  6 81 R**N VOL     5.050041E-04    1.850E-05   1.0  2.03E-05 
> R 
 POLYDISPERSE R=  3.23E+01 TO  1.11E+02  N=   1 TO  40 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.11E+02 
 PMIN= 6.004E-14 PMAX= 1.672E-11 ENT= 3.766E+00 B=N(7)= 0.000E+00 
 VNORM= 5.25346E-04  SIG(R)/RB= 3.1091E-01  SIG**2= 2.9683E+02 
 RBAR= 5.5413E+01  AREA P(R)= 5.6182E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC 11   49 DATA+ 0 PRED,  5 PAR  SWSE= 2.022E+01 XDWE= 8.952E-03 VAR=  
4.396E-01 
> R 
 POLYDISPERSE R=  3.23E+01 TO  1.11E+02  N=   1 TO  40 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.11E+02 
 PMIN= 5.997E-14 PMAX= 1.671E-11 ENT= 3.766E+00 B=N(7)= 0.000E+00 
 VNORM= 5.24995E-04  SIG(R)/RB= 3.1091E-01  SIG**2= 2.9682E+02 
 RBAR= 5.5412E+01  AREA P(R)= 5.6147E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC 12   49 DATA+ 0 PRED,  5 PAR  SWSE= 2.021E+01 XDWE= 3.490E-04 VAR=  
4.394E-01 
> R 
 POLYDISPERSE R=  3.23E+01 TO  1.11E+02  N=   1 TO  40 
 DR=N(4)=  2.00E+00 RMAX=N(5)=  1.11E+02 
 PMIN= 5.998E-14 PMAX= 1.670E-11 ENT= 3.766E+00 B=N(7)= 0.000E+00 
 VNORM= 5.24919E-04  SIG(R)/RB= 3.1091E-01  SIG**2= 2.9682E+02 
 RBAR= 5.5413E+01  AREA P(R)= 5.6137E-10 
SMEARING ROUTINE CALLED 
 
NPSMEAR,NSHAPE,SCALE,NSIMP =   12    0     1.000   21 
NOTE for debug purposes, non-smeared calc is in SET 5 
CYC 13   49 DATA+ 0 PRED,  5 PAR  SWSE= 2.021E+01 XDWE= 3.399E-04 VAR=  
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4.394E-01 
> PP   [ fit converged, XDWE is small compared to SWSE ] 
T  1 P 14 S  1 C  2 N  5 
W  1 K  0 IP 1 MS 1 IY 1 Q  7 R  7    6    1    1    0    2    0   49   
13    5 
 (POLY DISP SPHERES)*HSS(Q)    CONSTRAINED TO FIT RM AND LAM                    
 1  6 81 R**N VOL     5.249193E-04    1.261E-05   1.0  7.24E-08 
 2  6  2 R2-R1        7.893859E+01    0.000E+00  -1.0  0.00E+00 
 3  6  3 R1           3.229306E+01    0.000E+00  -1.0  0.00E+00 
 4  6  4 N           -1.500000E+00    0.000E+00   0.0  0.00E+00 
 5  2  1 LAMBDA       5.500000E-01    0.000E+00   0.0  0.00E+00 
 6  2  2    R-MID     7.176235E+01    3.436E-01   1.0 -1.19E-03 
 7 22  1 HS S(Q) VOL  1.150149E-01    1.060E-02   1.0  4.80E-05 
 8 22  2 SPH RADIUS   1.183947E+02    3.820E+00   0.4  8.52E-02 
 9  3  1 BKG A        1.297392E+00    2.811E-02   1.0 -4.03E-06 
10  3  2     B*Q      0.000000E+00    0.000E+00   0.0  0.00E+00 
11  3  3     C*Q**2   0.000000E+00    0.000E+00   0.0  0.00E+00 
12 15  1 SMEAR        1.000000E+00    0.000E+00   0.0  0.00E+00 
13 15  2 NSIMP        2.100000E+01    0.000E+00   0.0  0.00E+00 
14 99  1    SCALE     1.000000E+00    0.000E+00   0.0  0.00E+00 
  1  1 2658         CALC 2 BKG 0 POL 3  SSE= 2.021E+01 
CONSTRAINT  1 TYPE  3 USE= 1 
V(  2 ) = 2.0* V(  5 ) * V(  6 )   R2-R1=2*L *RM 
 
CONSTRAINT  2 TYPE  4 USE= 1 
V(  3 ) = (1.0- V(  5 ) )* V(  6)   R1=(1-L)*RM 
 
1.000E-01 5.249E-04 3.109E-01 2.000E+00 1.112E+02 
>PLOT 
 PLOT CONTROLS  IDEV= 0-EXIT, 1-screen, 2-file  
error bars are IEB*sigma (ONLY USE ON LINEAR PLOT ) 
IPW=1 adds scaled wts 
IDEL spreads graphs apart (IDEL=2 is default) 
     IDEV,IEB,IPW,IDEL =        (5I1) 11  [ to screen with errors] 
 OVER-PLOT P(Q)  ?  ( LTYP,LSYM (2I1) ) 1  [ solid line] 
 OVER-PLOT RESCALED S(Q)  ? ( LTYP,LSYM (2I1) ) 54  [ xxx] 
 OVER-PLOT RESCALED BETA(Q)  ? ( LTYP,LSYM (2I1) ) 3  [ dashed] 
SUBTRACT BACKGROUND ("WRK",MODELS 3&4) ? (ANS 1) 0 
       AUTO      CHOICE  
X1   0.000E+00 0.000E+00 
X2   2.258E-01 2.258E-01 
Y1  -2.900E+02-7.411E+02 
Y2   8.620E+02 8.725E+02 
 
AXES  1-AUTO, 2-U CHOOSE, 3-USE CHOICE, 0-RETURN ? 1 
TITLE ?   
 EXAMPLE FIT TO RUN 2658 WITH POLYDISP INTERACTING SPHERES 
 
[ plot 1 appears here ] 
 
 S(Q) *  5.00E+02 +   0.000E+00  [ rescale and shift used to overplot S(Q) on 
same axes] 
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 BETA(Q) *  5.00E+02 +   0.000E+00 
 
 PLOT CONTROLS  IDEV= 0-EXIT, 1-screen, 2-file  
error bars are IEB*sigma (ONLY USE ON LINEAR PLOT ) 
IPW=1 adds scaled wts 
IDEL spreads graphs apart (IDEL=2 is default) 
     IDEV,IEB,IPW,IDEL =        (5I1)  [ return to leave plot ] 
 
TALK ROUTINE 
> STOP      [ go back to FIT menu] 
DID YOU REMEMBER TO PF AND FF ? ,NOW SAVE CALC SETS 
 
 
1-READ MODEL FILE              4-CALC ONLY, CHOOSE Q 
2-CHOOSE OBS,CALC SETS ETC.    5-INDEX 
3-ENTER FIT ROUTINE            6-RETURN TO MAIN ROUTINE 
6       [ go back to main program] 
Command> LIST 
 WRITE SET I TO DATA FILE (J=1), MONITOR(J=2) OR TO  
SCREEN(J=0)  I,J=? (2I1) 21   [ save calculated I(Q) in a file] 
SET( 2 )   CAL         
OLD TITLES: 
                         CAL                                                    
                         CAL                                                    
TITLE: 
26-MAY-89     09:24:22   CAL                                               
                         CAL                                                     
 0-CONTINUE, 1-CHANGE TITLES, 2-RETURN  ? 1 
ENTER TWO TITLE RECORDS (14A4, 20A4) : 
    FIT TO 2658.Q 
    second title line                 
 
TITLE: 
26-MAY-89     09:24:22      FIT TO 2658.Q                                                                                                                      
 
 0-CONTINUE, 1-CHANGE TITLES, 2-RETURN  ? 0 
Command>PLOT  [ use the long plot routine to draw the P(R) in set 3] 
Welcome to the PLOT routine, enter HELP after 
          Plot>    if you are lost 
Plot>READ 
HOW MANY CURVES ? (I1) 1 
FOR EACH CURVE TO BE DRAWN ENTER ON THREE LINES : 
SET NUMBER (I1)  
LTYPE,LSYMBOL,IFOLD,IEB,INUM-NOT-Q   (5I1) 
Y SHIFT (F12) 
CURVE 1 SET ? (I1) 3 
LT LSY IFLD IEB INNQ   (5I1) 1 
YSHIFT 0.0 
Plot> SCREEN 
       AUTO      CHOICE  
X1   0.000E+00 0.000E+00 
X2   1.103E+02 2.258E-01 
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Y1   1.200E-13-7.411E+02 
Y2   1.734E-11 8.725E+02 
 
AXES  1-AUTO, 2-U CHOOSE, 3-USE CHOICE, 0-RETURN ? 1 
TITLE ?   
 POLYDISP  R**-1.5  FOR 2658.Q 
 
 [plot 2 appears here ] 
 
Plot> STOP 
Command> STOP 
FORTRAN STOP 
$ 
$ [returns to VMS operating system]  
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Appendix E - Least Squares and Marquardt Fits 

 

General non-linear least squares fitting, of the sort required for most SANS data, relies on some 
understanding of  statistical distributions, estimation of functions and solving a set of equations ( matrix 
inversion).  Thus the subject usually appears towards the end of text books on “numerical methods” ! All 
that I can do here is try to portray very briefly the route that is followed.  Chapter 15 of “Numerical Recipes” 
gives a very much more rigorous account. [“Numerical Recipes in FORTRAN, The art of scientific 
computing”, W.H.Press, S.A.Teukolsky, W.T.Vetterling & B.P.Flannery, Cambridge University Press, 2nd 
Edition, 1992, reprinted 1994.  Other versions of the book & software CD are available for Pascal, C, & Basic. 
] 

Suppose our data are  y i  where i = 1 to N at points xi - these could be SANS intensities at N values of 
scattering vector Q value.  

Let the parameters in our model be a j where j = 1 to M 

Calculated data points are   CALCi = function( xi, a1, a2, … aM) 

Define a  “merit function”   χ
σ

2
2

1
=

−







=
∑ y C A L Ci i

ii

N

  (1) 

If the errors (standard deviations) on data σi are independent and have a normal (Gaussian) distribution 
then statistical theories tell us that the minimum in χ2 is the “most likely” solution and to expect that  χ2/(N-
M) ~ 1. 

( A normal distribution is within ±2σ  68% of the time, ±3σ   95% of the time.  The “Poisson distribution”  for 
neutron counts has a broader tail for small counts.  Since the merit function is then not quite correct, 
“outliers” can be a problem, set their Wi to zero ?? ) 

At the minimum of χ2 its derivative with respect to each of the parameters a j will be zero: 

∂ χ
∂

∂
∂

( )
( )

2

0 0
a

M W y CALC
CALC

aj
i i i

i

ji

= − =∑gives    equations   (2) 

Where weights  W i = 1/σi
2  

For the simplest case the model is  “linear” in the parameters, each of which is just a scale factor in front of 
some mathematical function ( which itself may be very non-linear) so that: 

CALC a Fun x a Di k k i
k

M

k ik
k

M

= =
= =

∑ ∑( )
1 1

      (3) 

Note though that each “basis function” is actually just the derivative D ij of the calculated model for that 
parameter: 

D
CALC

a
Fun xij

i

j
j i= =

∂
∂

( )        (4) 

In the linear case the set of equations (2) can be solved exactly to give the parameter values a j.  We will now 
however make the equations slightly more complicated by anticipating the method for the more general 
“non-linear” case ! 

Assume the present parameters a j
now give CALC i

now with differences Ei = (y i - CALCi
now)  

We need to shift the parameters to a j = aj
now  + ∆aj  to give the best ( or at least a smaller) value of  χ2.  Since 

the problem is linear, we can use (3) to write 
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CALC CALC a Di i
now

k ik
k

= + ∑∆       (5) 

which is substituted into (2) to give a set of M equations: 

0=






 ∆−∑ ∑
i

ij
k

ikkii DDaEW       (6) 

The equations  are easier to manipulate in matrix form as: 

∆a D WD D WET T( ) − = 0  

which may be rearranged to give the desired a column of parameter shifts ∆a as a product of a square “least 
squares matrix” and a column matrix : 

∆a D WD D WET T= −( ) ( )1        (7) 

∆a is a column vector of M rows, derivative matrix D has N rows x M columns, weights Wii are a diagonal N x 
N, and differences E is a column of N rows.  Superscripts “T” mean transpose (i.e. D ij

T = Dj i )  and “-1” 
means the matrix inverse.   

[ If you are not familiar with this kind of notation just concentrate on the meaning of the results !  If  an 
example might also help, then for the case of just two parameter and 3 data points, the simultaneous 
equations to be solved to find shifts a = ∆a1 & b=∆a2 are: 

 

a WD W D WD b WD D W D D WD D WD E W D E WD E
a WD D WD D WD D b WD W D WD WD E WD E W

a a a a b a b a b a a a

a b a b a b b b b b b

( ) ( ) ( )
( ) ( ) (

1 1
2

2 2
2

3 3
2

1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3 1 1
2

2 2
2

3 3
2

1 1 1 2 2 2

0+ + + + + − + + =
+ + + + + − + + 3 3 3 0D Eb ) =

] 

In a “linear case” ( such as a polynomial or straight line fit)  ∆a gives an immediate and exact solution, even 
with zero starting parameters. 

For a “non-linear” case ( as almost all SANS ) equations (3) to (5) are only approximately true, so the 
solution must be iterated.  Note that the derivatives D ij are now n o longer constant at each Q value, so they 
must be recalculated for each iteration. 

Fortunately it can be shown that ignoring the second derivatives in (3) is not detrimental, since they are 
usually small and statistically they should tend to cancel out when summed over the data. Nor does this 
have an effect on the location of the χ2  minimum, only on the route taken to reach it.   

It is a remarkable fact that the least squares method works at all for the “non-linear” cases found in SANS ! 

M x M matrix  C = (DTWD)-1 is the variance-covariance matrix, its diagonal elements are Cj j = σj
2 the square 

of the statisitical standard deviation for each parameter a j - assuming the conditions mentioned above on σi 
for the data are valid !   Effects of systematic errors, such as imperfect data treatment, or say Q resolution 
not explicitly included in the model must be considered separately ! 

Frequently the parameter “errors” obtained for SANS data are unrealistically small, as some trial and error 
adjustments and common sense will easily show.  Off-diagonal elements Cij give the correlation coefficients 
between parameters, which are helpful to identify poor parametrisation of a model. 

Note there is no standard notation for the different matrices (e.g. derivatives D are sometimes called J for 
Jacobian).  In some applications it may be useful to include off-diagonal elements in the weight matrix W to 
allow for “correlation” between data points.  This can help to give more realistic error estimates. 
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Practical results 

All that is needed for least squares fits are (a) routines to calculate the model CALC and its derivatives D for 
a given set of parameters and Q values and (b) a routine to invert a symmetric matrix (i.e. to solve a set of 
equations).     

Derivative Dij may be c alculated numerically (but less reliably) by simply shifting the value of a parameter aj 
temporarily by a small amount δ and calling the model routine again: 

( )D CALC x a a a a CALC x a a a aij i j n i j n≈ + −
1

1 2 1 2δ
δ( , , ,..( ),... ) ( , , ,.. ,... )   

The “non-linear” nature of most SANS problems requires that the least squares solutions are iterated.  In a 
well behaved system each iteration gets closer to the χ2 minimum.  When χ2 ceases to improve further the fit 
has “converged”.  Alas not all systems are “well behaved”, so we must learn some ways to cope ! 

 

Steepest Descent & the Marquardt method 

 

If the χ2 merit function (1) is not well approximated by a quadratic near its minimum then the iterative least 
squares solution may not work.   

Some oscillatory behaviour of given ∆aj between iterations may be damped down by applying only a 
fraction of the calculated shifts.  Worse behaviour might require some time consuming trial & error on key 
parameters.   

Following the “steepest descent” gradient of the χ2 surface may be an alternative route to the desired 
minimum.  Least squares tends to spiral down at right angles to the steepest descent of the χ2 surface, 
thereby exploring more parameter space and being less likely to become stuck in a local minimum, but often 
in badly behaved cases “blowing up” altogether. 

Marquardt (using an idea of Levenberg) noted a simple connection between the least squares and steepest 
descent routes.  Replacing (DTWD) by a constant diagonal gives the steepest descent route.  By multiplying 
the diagonal elements of (DTWD) by (1+λ) where λ is small for least squares or large for steepest descent 
gives a route that varies between the two extremes. 

 

A - Well behaved least squares, explores 
reasonable parameter space. 

 

B - Least squares “blows up” as shifts are 
too large (could be damped down ? ) 

 

C - Steepest descent from new starting 
point finds best fit. 

 

D - Steepest descent finds a local minimum.  

 

The Marquardt method would steer 
between B & D, but still might fall into the 
local minimum ! 

 

 

a1 

a 2 

B 

A 
C 

D 

Schematic Least Square & Steepest Descent, 
on a 2 parameter χ2surface 
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The Marquardt recipe:  

(i) start with a modest λ ~ 1,  

(ii) compute D (and save it) and χ2 

(iii) calculate parameter shifts using (7) with diagonal elements of (DTWD) multiplied by (1+λ) 

(iv) compute new parameters and their χ2 

(v) if fit has converged, or too many iterations, stop ! 

(vi) if fit improves, keep new parameters, divide λ by 10 and return to (ii) 

(vii) if fit worsens, multiply λ by 10, return to (iii)  ( no new computation of D ) 

 

NOTE - to obtain the proper error estimates σj on parameters a j set λ=0 for a final calculation.  

The fit is guaranteed to improve, if only slowly, but not (in poorly behaved cases) to find a global minimum 
for χ2 as the steepest descent route can become stuck in a “local minimum”.  It may be important, as with 
ordinary least squares, to try to find the solution again from slightly different starting points.   

 

CONSTRAINTS 

 

In many cases physical constraints and prior knowledge ( e.g. shell to core molar volume ratio, consideration 
of fully extended surfactant tail lengths ) may be required to locate physically meaningful parameters from 
amongst whole families of possible numerical solutions.   

Absolute intensities are also vital either by constraining scale parameters to known volume fractions or 
concentrations or, where samples or intensities are less well known, by checking that fitted scale parameters 
are consistent with sample compositions. 

If one parameter is constrained to another, then one could rewrite the model with one less parameter.  This is 
not of course very convenient, so it is better to write the model with the maximum likely number of 
parameters that could be adjusted or investigated. 

If parameter a j is a function f(ak) of parameter ak the model routine will give 
∂

∂
CALC

a
i

j

 so the least squares 

calculation has to add an extra term to 
∂

∂
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The FISH program will do this for a variety of pre-programmed constraint functions. 

 

 

©RKH 2/11/98 LEAST SQUARES FITS 
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Appendix F - NUMERICAL INTEGRATION - GAUSSIAN QUADRATURES 

 

Calculation of SANS intensities (and their derivatives)  frequently requires some numerical integration, 
for example to sum over a polydisperse particle size, or in the form factors for monodisperse rods (discs) 
or ellipsoids. 

Most of us will be familiar with the “trapezium rule” for integrating N data points, equally spaced h 
apart.  Apart from the weights of  ½ on the first and last points, this is just “adding up the data”. 

[ ]y x dx h y y y y y
x

x

N N
N

( ) ...
1

1
2 1 2 3 1

1
2∫ ≈ + + + + +−     (1) 

Simpson’s rule gives a better answer with the same points but different weights as it is equivalent to 
fitting a cubic equation through adjacent groups of three points. 

[ ]y x dx
h

y y y y y y y
x

x

N N N
N

( ) ...
1 3

4 2 4 2 41 2 3 4 2 1∫ ≈ + + + + + +− −   (2) 

Removing the restriction on the points being equally spaced allows use of  much more efficient 
“quadrature methods”, which use a table of specially chosen x values ( abscissae) and weights for the y 
values at those points.  Since we are integrating the model function, the non-equally spaced points 
pose no problem!   By some clever mathematics we may for example use a “10 point Gaussian 
quadrature” to integrate a function as if it were fitted by a 10th order polynomial, or say a 64 point 
quadrature for an order 64 polynomial.   The coefficients for a 10 point “Gauss-Legendre” quadrature are 
illustrated below.  Note that though for symmetry the integration interval is here -1 to +1 the abscissae 
and weights can easily be rescaled to suit a given range. 

( ) ( )y x dx y y y y( ) . ( . ) ( . ) . ( . ) ( . )
−

+

∫ ≈ − + + + − + + +
1

1
0 06667 0 9739 0 9739 014945 0 8651 0 8651  

( ) ( )+ − + + + − + + +0 21909 0 6794 06794 0 26923 0 4334 0 4334. ( . ) ( . ) . ( . ) ( . )y y y y  

( )+ − + +0 29552 01489 01489. ( . ) ( . )y y      (3) 

IF the function y(x) is well approximated by a polynomial then the resulting integral will be more 
accurate than say using Simpson’s rule with many more points, and hence the fitting program will run 
more quickly.  The abscissae in a Gaussian quadrature are grouped more closely towards the ends of the 
integration range.   

(Actual integrations need the abscissae and weights to many more decimal places than illustrated in (3) 
above.  Originally one looked them up in tables, but nowadays simple iterative routines are available to 
calculate them as needed. The precision of the computer becomes important for higher orders of 
quadrature. ) 

With modern computers the choice of integration scheme only makes a significant difference in speed 
for multi-dimensional integrals, such as for “oriented rods”.  In this latter case one must however be 
careful as the form factor for long, thin rods has strong oscillations for which Gaussian quadrature does 
not work well and Simpson’s Rule is more appropriate for parts of the integration.  It is advisable in any 
circumstance to test different integration schemes quite carefully, with increasing numbers of points to 
ensure that they converge adequately for a particular problem. 

A full discussion of numerical integration methods (e.g. Chapter 4 in Numerical Recipes) focuses on 
issues such as estimation of accuracy and effects of singularities in the function.  Certain functional 
singularities can be included in the quadrature, so that one “fits” say a polynomial times an exponential. 
These give rise to whole families of quadratures in addition to the usual “polynomial” Gauss-Legendre, 
such as Gauss-Chebyshev, Gauss-Laguerre, Gauss-Hermite and Gauss-Jacobi. 

One advantage of the simple “trapezium rule” equation (1) is that is may efficiently be extended to 
include extra points between those of the previous set of points, to give an iterative answer with easily 
assessed “accuracy”.  (Various library routines are available in this area.) 
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The Gaussian quadrature method does not have this property, increasing the number of points results 
in a completely new set of abscissae and weights.   The Gauss-Kronrod method is an “adaptive” 
integration scheme which expands the Gauss-Legendre polynomials in an optimal way, re-using results 
of the previous iteration.  It uses a sequence of N points such as N=10, 21, 43, 87.  Such “adaptive” 
schemes usually require to be given both an absolute and relative error expected for the result of the 
integration in order to know when to stop !  

 

 

 

 


