I16U

Exploiting Diamond-II for Investigations of Competing Interactions and Length-Scales

Member	Insitution
Urs Staub (Chair)	PSI, Switzerland
Roger Johnson	University College London
Marcus Newton	University of Southampton
Ian Robinson	Brookhaven National Laboratory, USA
Elizabeth Blackburn	University of Lund, Sweden
Robin Perry	University College London (DUC)
Pascal Manuel	ISIS
Dan Porter	DLS
Gareth Nisbet	DLS
Alessandro Bombardi	DLS
John Sutter	DLS
George Howell	DLS
Steve Collins	DLS
Sarnjeet Dhesi	DLS

(6,0.16) (7,16) (8,0.16) (9,1.16) (9,1.16) (9,1.16) (10,0.16) (10,

Diamond I16: Anatomy of an experiment

• Measure AF Bragg peaks (γ-Li₂IrO₃)

 Measure AF Bragg peaks over a wide range of momentum transfer

 Explore energy (resonance), temperature, azimuthal and polarization dependence.

PRL 113, 197201 (2014)

Noncoplanar and Counterrotating Incommensurate Magnetic Order Stabilized by Kitaev Interactions in $\gamma\text{-Li}_2IrO_3$

Determine magnetic and electronic structure:
Counter-rotating spins on a honeycomb lattice, dominated by Kitaev interactions.

Diamond I16: Evolution

Shrinking samples (here $\sim 15 \mu m$ crystal with D-I and D-II focus)

PHYSICAL REVIEW B 90, 205116 (2014) Graph Concentration of the hyperhoneycomb Kitaev lattice in β -Li₂IrO₃: Full solution via magnetic resonant x-ray diffraction

A. Biffin, R. D. Johnson, Sungkyun Choi, F. Freund, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart, and R. Coldea

Transition from bulk crystals to thin films and heterostructures

Use of coherence for imaging

Bragg Coherent
Diffractive Imaging
of atomic-scale strain
around defects, with
resolution of 10s of
nm.

Early work showed ~100 μm bulk domains
Thin films allow strain engineering & electric fields
Micron-scale domains imaged using PEEM (I06)

PRL 117, 177601 (2016) PHYSICAL REVIEW LETTERS week to concern the second secon

N. Waterfield Price, ^{1,2} R. D. Johnson, ^{1,3} W. Saenrang, ⁴ F. Maccherozzi, ² S. S. Dhesi, ² A. Bombardi, ² F. P. Chmiel, ¹ C.-B. Eom, ² and P. G. Radaelli, ^{1,7}

LETTERS
PUBLISHED ONLINE: 1 JUNE 2015 [DOI: 10.3038/NMAT4320

nature materials

Three-dimensional imaging of dislocation propagation during crystal growth and dissolution

Jesse N. Clark¹⁺¹, Johannes Ihli²i, Anna S. Schenk², Yi-Yeoun Kim², Alexander N. Kulak², James M. Campbell³, Gareth Nisbet⁴, Fiona C. Meldrum²* and Ian K. Robinson^{1,5}

Diamond I16 now

- Highly versatile
- Very stable optics
- Excellent scientific publications
- Huge benefit from Diamond-II
- Experiments slow and complex (large expert groups only – no remote access)
- Diffractometer and cryostat stability inadequate for Diamond-II
- Limited sample environments

I16: Huge gains from Diamond-II

- Increased flux
- Huge increase in brightness (coherence flux) ~ ESRF upgrade
- X4 smaller horizontal source (focus)
- X4 smaller horizontal divergence

I16 Upgrade

- Minor changes to optics and hutches
- Major re-design of experiment hutch components

116 Upgrade scheme: New experiment hutch layout

I16 Upgrade

Fully exploit Diamond-II to build on the established new directions for the beamline (small samples, imaging at competing length scales)...

Support the entire research cycle, with three experimental scenarios:

- 1. A high-speed highly-automated robotic diffractometer with sample changer and helium gas-jet (20-350 K) cooling. Entry-level remote instrument for sample characterization, magnetic propagation vectors, phase transitions...
- 2. A high-stability horizontally-optimized diffractometer for resonant, magnetic and coherent scattering; low-vibration cryostats (<3 K); full polarization control; remotely insertable microfocus optics
- 3. Large instrument to support a wide range of future specialist sample environments. Proposal includes a 1.5T 8-pole vector magnet with wide opening. Future stages driven by new priorities.

116 Upgrade: Who will benefit?

Robotic diffractometer

- Chemists and sample growers rapid materials discovery and screening
- Users of advanced facilities (I16 main instrument, X-FEL...)
- Materials scientists (diffraction maps etc)
- New users & students (training, automation)
- Remote users

Main Instrument

- Bragg Coherent Diffractive Imaging community
- All current users (enhanced flux, smaller focus, microfocus, improved stability, improved cryostat, horizontal scattering)

Advanced sample environment

- Science projects for vector magnet (complex frustrated and topological systems)
- Users of future sample environment provision

Diamond I16: New Science

Imaging defects and oxidation

states during battery charge-

cycling (Ulvestad et al)

Robotic diffractometer

Magnetic structure from single large crystal grains

Johnson)

Bragg Coherent Diffractive Imaging

Imaging AF domains in Sr₂IrO₄ (*Robinson*)

3d structure of Skyrmion phases

1.5T

vector

magnet

Anisotropy in frustrated rare-earth pyrochlores; coordination polymers (Johnson).

Ho₂Ir₂O

(Lefrancois et al)

- 8 166 A

'Staggered' physics, complex phases and their Hamiltonians.

Functional properties of HPHT growth (Perry, Diffracted Cohere