Synchrotron light has a wide range of applications in chemical research. Solid state chemistry is beginning to be explored under extreme conditions, revealing new polymeric and framework forms of various compounds. Extreme conditions experiments have great potential for new solid state chemistry to predict new materials and their properties.
Much of the research effort in the synthetic chemistry, materials and pharmaceutical sciences, within both academia and industry, are underpinned by small-molecule single-crystal X-ray diffraction techniques. The determination of an accurate crystal structure is a crucial factor not only in the characterisation of a new compound but it is also a crucial factor for our understanding of the properties of a material. Single-crystal diffraction remains the favoured method for determining the accurate structure of crystalline materials but when suitable single-crystals can not be grown powder-diffraction techniques offer a powerful alternative. They also offer the advantage that structural changes due to variations in temperature, pressure or some in situ chemical process can be readily tracked, which would be either too technically difficult or too time-consuming with single-crystal techniques.
The potential of microfocus X-ray spectroscopy is largely unexplored in chemistry. Sub-micron beams can give fundamental insights into a wide range of important chemical reactions and ultra-dilute systems, enhancing the study of reactions at solid interfaces and solid/liquid interfaces, and lead to the development of improved materials through studies of ceramic and composite materials.
X-ray rheology experiments can improve the understanding of food gels for example, and lead to the manufacture of better-designed polymers and more efficient production technology.
Simultaneous small angle X-ray scattering (SAXS) and mechanical testing allow the study of the microstructural changes that occur on deformation of polymers. By studying the behaviour of the material at different stages of degradation we are able to map the relationships between microstructure, degradation and ultimate mechanical response. This enables rational design of microstructure for desired properties.
To discuss possible chemistry experiments at Diamond, please contact the relevant beamline scientist or Andy Dent.
Potential industrial users should contact Elizabeth Shotton.
Diamond Light Source is the UK's national synchrotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire.
Copyright © 2022 Diamond Light Source
Diamond Light Source Ltd
Diamond House
Harwell Science & Innovation Campus
Didcot
Oxfordshire
OX11 0DE
Diamond Light Source® and the Diamond logo are registered trademarks of Diamond Light Source Ltd
Registered in England and Wales at Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom. Company number: 4375679. VAT number: 287 461 957. Economic Operators Registration and Identification (EORI) number: GB287461957003.