An Ambient-Pressure Gas-Flow Electron-Yield Cell for **Operando XAFS Studies of Liquid Jets with Tender X-Rays** Sin-Yuen Chang,^{1,2} Arturs Pugejs,² Giannantonio Cibin,¹ Thokozile A. Kathyola,² Elizabeth A. Willneff,³ Colin Willis,⁴ Peter J. Dowding,⁴ Anna B. Kroner,¹ Elizabeth J. Shotton,¹ Sven L. M. Schroeder^{1,2}

¹Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK. ²School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK. ³School of Design, University of Leeds, Leeds LS2 9JT, UK. ⁴Infineum UK, P.O. Box 1, Abingdon, Oxfordshire OX13 6BB, UK

Aim

Determine the feasibility of characterising chemical species in concentrated suspensions gas-flow total electron-yield X-ray absorption spectroscopy (TEY-XAS) in the tender X-ray range (~2-5 keV).

Motivations

- Understanding structure-function relationships during the synthesis/ formulation of materials with diverse practical end applications such as catalysts, fuel additives and pharmaceuticals.
- Operando studies are pertinent in elucidating the behaviour of chemical species under varying process conditions representative of real-world conditions.

D	ifferent Det	tection Mod	Calcite	٨	1 1						
ו		Transmission	Fluorescence Yield (FY)	Total Electron Yield (TEY)		1.5	-		\cap	-	
	Sample Homogeneity Required?	yes (avoid 'pinhole' effects)	no	no	ption (a.u.)						
	Ideal Sample Concentration	concentrated	dilute	concentrated	Normalized absor	1.0					

- X-ray absorption spectroscopy (XAS) using tender X-rays is valuable for probing elements from ~Mg to Ti.
- XA spectra can be collected in several different ways TEY is less prone to distortions in some sample environments compared to transmission and FY spectra.⁽¹⁾
- TEY-XAS is particularly suitable for liquid samples demonstrated by various soft X-ray studies under vacuum.⁽²⁾
- As a modification of vacuum TEY-XAS, gas-flow TEY-XAS, is particularly suitable for measurements with tender and hard X-rays under ambient conditions but has not been used for liquid samples.

gas-flow TEY-XAS

showing optical paths for detection of XA spectra in transmission, FY and TEY.

environment propagate the electron signal from the sample to the electron collector.

Feasibility Study: Carbonation of Ca(OH)₂

Beamline: B18 - Quick-XAFS at Diamond Light Source **Energy**: Ca K-edge (~4 keV)

System: Carbonation of 360 mM Ca(OH)₂ aqueous suspension

Linear combination fitting results 6 – TEY data sorption Normalised 5

- Ca K-edge XANES captured the timedependent transition of Ca(OH)₂ into calcite during a carbonation reaction.
- The relative change in composition was quantified with linear combination fitting of the

Conclusions

- We describe a liquid jet cell for characterising complex samples with gas-flow total electron-yield XAS under ambient temperature and pressure.
- The cell provides a windowless means of probing samples in a liquid-jet with TEY-XAS.
- Flow of helium gas in the sample environment is essential for the technique and propagates the electron signal from the sample to the electron collector
- The reactive crystallization of calcium carbonate from the carbonation of a multiphase (gas-liquid-solid) $Ca(OH)_2$ suspension was chosen for a feasibility study.
- Aliquots of the multiphase suspension were exposed to the X-ray beam in the form of a liquid jet— the jet was recycled between a reaction rig and the X-ray cell to prevent radiation damage.
- TEY XA spectra were collected at the Ca K-edge (~4 keV) and the transition of Ca species from $Ca(OH)_2$ to $CaCO_3$ over time was quantified with linear combination

Change in sample composition vs time as quantified using linear combination fitting.

Engineering and Physical Sciences Research Council

For more information please visit www.diamond.ac.uk

or contact Sin-Yuen Chang: sinyuen.chang@diamond.ac.uk

analysis of the XANES spectra.

References

1. S. L. M. Schroeder, G. D. Moggridge, T. Rayment et al., J Mol. Catal. A. 119 (1997), 357-365 2. K. M. Lange, R. Konnecke, S. Ghadimi et al., Chem. Phys. 377 (2010), 1-4

Acknowledgements

This research was supported by Infineum UK and EPSRC Centre for Doctoral Training in Complex Particulate Products and Processes (Grant: EP/L015285/1). The authors are grateful to Diamond Light Source for the beamtime awards (SP21040 and SP17686) at beamline B18. SLMS acknowledges support of the Bragg Centenary Chair by the Royal Academy of Engineering, Infineum UK Ltd and Diamond Light Source. SYC would like to thank Infineum UK, Ltd, AstraZeneca and Diamond Light Source for financial support.

