Automated in-situ optimisation of bimorph mirrors at Diamond Light Source

John P. Sutter, Simon Alcock, Kawal Sawhney Diamond Light Source

Bimorph mirror:

Mirror composed of two piezoelectric layers:

-Series of electrodes deposited on layer surfaces

-Precisely ground and highly polished silica layer on top surface -Heavy metal coatings (Pt, Rh, Pd) on silica layer to increase reflectivity.

Routinely used to focus synchrotron beams at -APS

- -SOLEIL
- -PETRA III
- -Diamond Light Source:
 - I02, I03, I04 (macromolecular crystallography)
 - I07 (surfaces and interfaces)
 - I19 (small-molecule single-crystal diffraction)
 - I22 (non-crystalline diffraction)
 - I24 (microfocus macromolecular crystallography)

diamond

I02 VFM – 8 piezos

Bimorph mirrors have many electrodes (up to 32)

- \rightarrow non-cylindrical (e.g. elliptical) figures well approximated
- \rightarrow low spatial frequency roughness/slope error (period \geq 20 mm) can also be corrected.

But optimisation is also challenging:

Measurement of slope errors must be

- portable
- reproducible
- accurate (error $<< 1 \mu rad$)
- automated
- quick (< 2-3 hours).

Performed by pencil-beam method.

Calculation of electrode voltage corrections is done by the well-known interaction matrix method.

Ex-situ vs. in-situ: both done at Diamond Light Source

<u>Ex-situ</u>: examination of mirror in metrology cleanroom lab (Diamond-NOM, Fizeau interferometer, micro-interferometer) -Initial characterisation and optimisation

-Not dependent on synchrotron beam \rightarrow saves scarce beamtime

But beamline operating environment can differ greatly from controlled cleanroom:

-mounting strains

-ultra-high vacuum

-heat load imposed by incident beam.

 \rightarrow in-situ examination is also necessary.

<u>In-situ:</u> examination of mirror in its beamline, at its operating wavelength

Pencil-beam method: application to synchrotron beamlines O. Hignette, A. Freund & E. Chinchio, *SPIE Proc.* **3152**, 188-199 (1997)

No less than 2-3 points scanned per electrode.

diamond

<u>Piezo response functions</u>: change in mirror figure per 1 V change of voltage to given electrode

Example: I04 vertical focusing mirror (VFM): 8 electrodes

Beamline controls: *done in-house by our own Controls and Data Acquisition groups*

Beamline motors and X-rayX-ray camera image collection:camera control: EPICSEPICS & Firewire

Pencil-beam scan setup and execution: Generic Data Acquisition (GDA)

Image processing to extract reflected beam positions: **Jython script** *peak2d*

Inversion of interaction matrix to derive voltage corrections: **Jython script using inbuilt linear algebra routines**

Ability to focus/defocus beam in-situ: 119

<u>Repeatability</u>: *119: 4 consecutive slit scans in same direction*

Successive plots shifted by intervals of 2. P-V = peak-to-valley difference $\sigma = standard deviation of difference$

Agreement of in-situ with ex-situ measurements

Ex-situ: from Diamond-NOM

Sharp jumps in slope error due to surface damage cause being investigated.

Good agreement in slope error for 3 independent mirrors!

Agreement of X-ray eye and inline viewing system

Pencil beam technique is independent of the camera.

Diffraction from incident beam slit sets the ultimate spatial resolution of the pencil-beam scan.

1-D Fresnel diffraction patterns of a rectangular slit

Best spatial resolution obtained at $\sim 10 \ \mu m$ slit width.

Narrower slits actually increase the footprint!

Conclusions

An automated procedure has been used at Diamond Light Source to optimise bimorph mirrors quickly and easily.

This procedure is repeatable to within ~0.1 camera pixels, or ~0.1 μ rad with camera at 6 m from mirror.

It yields measurements that agree well with those taken ex-situ with the Diamond-NOM.

It permits both focusing and deliberate defocusing of X-ray beam.

Diffraction limits the ultimate spatial resolution that can be achieved by reducing the incident beam slit width.

This automated method is not confined to hard X-ray bimorph mirrors!

Ex. Diamond I20 collimating mirror

- Curved using mechanical benders
- Gravitational sag compensated by 2 prop loads
- Pencil beam scans used to adjust both curvature and sag.

Pencil-beam scans of slope error are similar to calculations of elastic bending of beams.

Acknowledgments

<u>Diamond Light Source Controls</u>: Ronaldo Mercado James O'Hea Nick Rees

Diamond Light Source Data Acquisition: Chris Coles Paul Gibbons Rob Walton

