

## AT-WAVELENGTH METROLOGY OF X-RAY OPTICS

## **Eric Ziegler** *European Synchrotron Radiation Facility, France*

## **Sébastien Berujon** Diamond Light Source, United Kingdom European Synchrotron Radiation Facility

## L. Peverini

formerly ESRF now at Société Européenne de Systèmes Optiques, France

## AcTive X-ray & XUV OPtics

Diamond Light Source, 4-5 April 2011



## AT-WAVELENGTH (X-RAY) METROLOGY



- **PENCIL BEAM DEFLECTOMETRY**
- **GRATING INTERFEROMETRY**
- HARTMANN SENSING
- SPECKLE-BASED METHODS





## O. Hignette (ESRF)

- T. Weitkamp (now SOLEIL), C. David (SLS), I. Zanette (ESRF)
- G. Dovillaire, S. Bucourt (IMAGINE OPTIC) P. Mercere (SOLEIL), M. Idir (now NSLS-II)
- R. Cerbino (Univ. Milano)
- A. Vivo, R. Barrett (ESRF)
- I. Kozhevnikov (Institute Crystallography, Moscow)
- K. Sawhney, H. Wang (Diamond)
- J-Y. Massonnat, J. Susini (ESRF)



## AT-WAVELENGTH METROLOGY

# Development of X-ray sources (FEL, SR and others...) stimulate progress in optics

- minimize beam wavefront errors caused by optics
- correct incoming wavefront imperfections in view, e.g., of perfect collimation, focusing or otherwise
- diffraction-limit as ultimate goal, dimensions ~ several tens of nanometer down to 1 nm...
- At-wavelength to monitor active optics or help manufacture optics
- ☆ At-wavelength to account for specificity of interaction with matter in X-XUV optics (coherence and scattering effects with surface and/or volume), as a way to integrate factors difficult to model or that may evolve with time
  - X-ray: short wavelength > precision metrology
  - to take advantages of unique properties of X-XUV



## HARD X-RAY PHASE CONTRAST IMAGING



☆ X-ray images taken at ESRF BM5 (1994)
 ☆ Human vertebra with the detector located close and far from the sample



☆ XLTP using X-ray SR beam as a wavefront reference

Ref. O. Hignette et al., SPIE Proc. vol. 3152 (1997); Review of Scientific Instruments, 76 (2005)



An X-ray slope error measuring device



 $\therefore$  Reference wavefront: deviation from a sphere of radius 42.5 ± 0.1 m



☆ Slope standard deviation: 28 nrad (rms)

 $\overleftrightarrow$  Wavefront standard deviation: 0.9 pm (rms) [equiv.  $\lambda$  / 100 ]

Courtesy: O. Hignette



### **Dynamical bending optimization of Kirkpatrick-Baez focusing optics**

🙀 Combination of two perpendicular off-axis elliptical cylinder mirrors



🙀 Goal: a spherical wavefront centered on the focus (CCD location)

☆ Deviations from ideal case are read sequentially on the X-ray CCD camera as a function of the slit position

 $\cancel{x}$  Mirror figure corrected by 2-moment bender based on flexural hinges

Interaction matrix to describe bending requires 3 wavefront measurements (unit displacement on each actuator) & linear procedure



Precision of figure metrology

Courtesy: O. Hignette

on positioning: 20 nm on shap

on shape: 0.25 nm on 100 mm mirror

Precision consistent with diffraction-limited operation



#### EXAFS MEASUREMENTS USING WIDE-BAND MULTILAYER KB OPTICS

European Synchrotron Radiation Facility



## **GRATING INTERFEROMETRY**







Au grating (2  $\mu$ m pitch)

 $\Rightarrow$  presence of object distorts wavefront > deflects the beam

> local displacement of the fringes > different intensity at the detector

intensity correlated to first derivative of wavefront phase > differential
phase contrast

phase-stepping interferometry allows to separate absorption from phase: phase gradient image and transmission signal

Ref. T. Weitkamp et al. Optics Express, 13 (2005)

## **GRATING INTERFEROMETRY** European Sy

 $\cancel{x}$  Phase stepping interferometry: linear transverse scan of one of the



Phase stepping interferometry: measure of BM5 beam wavefront



g2: pitch 2nd grating; d: inter-grating distance;  $\phi$  : fringe phase in the image

Phase gradient in x-direction: 
$$\frac{\partial \Phi(x,y)}{\partial x} = \frac{g_2}{\lambda d} \varphi(x,y)$$
 > Radius<sub>v</sub>: 37.203 m



### **GRATING INTERFEROMETRY**



 $\overleftrightarrow$  Scattering signal and phase derivative in x and y directions

 $\Rightarrow$  Helps overcoming limitations due to presence of a blind direction



Ref. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, C. David, PRL, 105 (2010)



#### **2D-GRATING INTERFEROMETER**



Ref. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, C. David, PRL, 105 (2010)



#### Wavefront sensing and adaptive optics in X-ray range

Schack-Hartmann wavefront sensor from Imagine Optic (HASO)

Automatic KB alignment already achieved using soft X-rays (3 keV) Ref. P. Mercère, M. Idir, T. Moreno, G. Cauchon, G. Dovillaire, X. Levecq, L. Couvet, S. Bucourt, P. Zeitoun, Optics Letters, 31, 2 (2006).

 $\Rightarrow$  Hartmann grid for hard X-rays (E= 14 keV)



#### Multilayer-coated mirror, 170 mm, 8.1 mrad at 14 keV, trapezoidal shape





access to wavefront local slopes (derivative) by sampling the incoming beam through a Hartmann grid

 $\Rightarrow$  each sub-aperture providing its own spot on a CCD camera, the sensor delivers a set of {x,y} spot centroid positions or Hartmann pattern

Vslit= 1.15 mmL<sub>mirror</sub>= 142 mmD= 0.10 mexpo time: 1.3 s



wavefront obtained by integration of the local slope, quality depending on the number of sub-apertures (higher is better but must avoid overlapping)



## HARTMANN SENSING

Vslit= 1.15 mm





## Residual wavefront allows to calculate intensity profile at the focus

#### Before correction: 2.0 nm rms, 6.8 nm PV



#### After correction: 1.4 nm rms, 5.0 nm PV



#### The European Light Source



results on reflected wavefront expected to be better by liberating constraint on the tilt

 $\Rightarrow$  overnight monitoring of the wavefront sagittal radius of curvature:



Fluctuation ~ 0.1 mm corresponding to wavefront change ~ 0.3 nm



X-ray speckle: random intensity pattern created by irradiation of a scattering object with a partially coherent light

☆ Near-field regime: speckle grains do not change in size and shape over a distance  $z_{NF} \sim dD^2 / \lambda$  *d: speckle grain size D: transverse coherence* 

Ref. R. Cerbino, L. Peverini, M. Potenza, A. Robert, P. Bösecke, M. Giglio, Nature Physics 4 (2008)

Generation of a static speckle pattern: solid membrane containing phase objects (e.g., cellulose)

ESRF BM5 beamline: speckle pattern behind scattering membrane located downstream crystal monochromator beam and Be windows





#### Tracking the speckle pattern using digital image correlation



Subset tracking between images with 0.01 pixel accuracy

Absolute configuration



Measurement of the wavefront state at several detector planes



## Deviation from ellipsoid (in nm) E: 17 keV, two images distant 500 mm



- Wavefront radius:  $R_V = 37.43$  m,  $R_H = 40.37$  m with picometer precision
- Spatial resolution: 5.8  $\mu$ m over 4 mm x 4.6 mm
- Precision on slope: better than 0.1 μrad

### 2D reconstruction of the mirror surface by inverse ray-tracing process



#### PhD thesis of Sebastien Berujon



## CONCLUSION

### $\Rightarrow$ At wavelength metrology:

- easier if end user/application based at large research facility source
- shearing interferometry used at laboratory source (*Röntgen award 2010*)
- speckle tracking: simplicity of the instrumentation (work in progress)

 $\Rightarrow$  In-situ at-wavelength metrology to enable accurate measurements on:

- beamline optical elements
- mirror figure correction (active optics or mirror surface figuring)
- out-of-focus metrology desired (user experiments and routine performance control, on line mirror figuring,)
  - mirror figuring: surface profile needed

## $\Rightarrow$ Precision on slope error can reach 0.1 to 0.03 $\mu$ rad

#### Limits of some at-wavelength methods

CONCLUSION

- sampling limits with short mirrors or viewed at small angle
- (e.g., hard x-rays on uncoated mirror surface)
  - 2D observation vs one direction at a time
  - shearing interferometry: strongly curved surfaces
- XST: minimum curvature to benefit from beam magnification and gain sensitivity

**Complementarity with other techniques** (calibration, limited access to X-XUV...)

• access to NOM, LTP, stitching interferometry... is important