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SCAT TERING: SINUSOIDAL GRATING

PSF parabola plus sinusoidal grating using Fresnel diffraction
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PSF parabola plus sinusoidal grating using Fresnel diffraction

Fresnel-diffragtion
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A = 1A Vs. ray-tracing
SINUSOIDAL GRATING:
| = Asin2rmX/®) where A=0.1 ym ® =1cm
PREDICTED PEAK POSITIONS:
® = N N(cosB; - cosBs)
PREDICTED PEAK HEIGHTS:

| = IN[(2TTA/N)(SING; + SiNBs)]



PSF parabola plus sinusoidal grating using Fresnel diffraction PSF parabola plus sinusoidal grating using Fresnel diffraction
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E =0.004 keV
HEW = 16.2 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E = 0.006 keV
HEW = 11.9 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E =0.01 keV
HEW = 10.0 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E = 0.025 keV
HEW = 10.5 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E =0.1 keV
HEW = 10.3 arcsec

=
3]
Q
n
(&)
S
&
LL
n
o

0

Focal plane (arcsec)

Tuesday, April 26, 2011



PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E =0.4 keV
HEW = 10.7 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E=1.2 keV
HEW = 12.7 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E =2.5 keV
HEW = 14.5 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E =124 keV
HEW = 21.0 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E = 25.0 keV
HEW = 27.0 arcsec
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PSF COMPUTATION FOR A TYPICAL MIRROR
PROFILE

PSF simulations parabola plus geometrical errors and PSD

E = 50.0 keV
HEW = 37.0 arcsec
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HEW VARIATION WITH ENERGY
comparison with analytical method (Spiga 2007)
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HEW VARIATION WITH ENERGY
comparison with analytical method (Spiga 2007
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SLUMPED GLASSES PSE ANALY SIS

SURFACE METROLOGY:
G1 glass G2 glass

x - PROFILES MEASURED
WITH 3D PROFILOMETER
5-200-mm

PSD G2 glass

I = PSD ACHIEVED FROM
AFM, OPTICAL
INTERFEROMETER AND
X-RAY DIFFRACTOMETER E
MEASURE |
T mm=0.1um
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SLUMPED GLASSES PSE ANALY SIS

SURFACE METROLOGY
G1 glass G2 glass
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SLUMPED GLASSES PSE ANALY SIS
PSF COMPUTATION

PSF G1 glass at 1.5 keV
T

PSF G1 glass at 3 keV
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SLUMPED GLASSES PSE ANALY SIS
PSF COMPUTATION
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SLUMPED GLASSES PSE ANALY SIS
HEW BEHAVIOR WITH ENERGY

G1 slumped glass, from PSD at 1 mm - 0.1 ym G2 slumped glass, from PSD at 1 mm - 0.1 yum

A Fresnel diffraction, only PSD
- Analytical method
O Complete profile

domin. by freq. < (1 mm )
(unknown)
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at low frequencies
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Behavior of HEW-with Energy of G1-G2 mirrors:

comparison between the analytical method and the Fresnel diffraction simulations.
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SLUMPED GLASSES PSE ANALY SIS
HEW BEHAVIOR WITH ENERGY

The HEW contribution
of profile and

A Fresnel diffraction, only PSD roughness is consistent
- Analytical method
O Complete profile

G1 slumped glass, from PSD at 1 mm - G2 slumped glass, from PSD at 1 mm - 0.1 ym
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with the linear sum (unknown)
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Behavior of HEW-with Energy of G1-G2 mirrors:

comparison between the analytical method and the Fresnel diffraction simulations.
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SLUMPED GLASSES PSE ANALY SIS
HEW BEHAVIOR WITH ENERGY

Analysis of different spatiakwavelengin rangesimpact
on PSE degradation

G2 glass, 0.71 deg incidence angle : G2 glass, 0.71 deg incidence angle
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SLUMPED GLASSES PSE ANALY SIS
HEW BEHAVIOR WITH ENERGY

Analysis of different spatiakwavelengin rangesimpact

on PSE dearadation

At 1.5 keV the

| contribution of spatial
% wavelengths up to
1 mm is negligible
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SLUMPED GLASSES PSE ANALY SIS
HEW BEHAVIOR WITH ENERGY

Analysis of different spatiakwavelengin rangesimpact

on PSE dedradation
At 1.5 keV the
| contribution of spatial
. wavelengths up to

1 mm is negligible

This-analysis-should-allow usto understand at which
Spatialwavelength-scale an active X-ray optic system
should operate to-obtain the best efficiency
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DOUBLE REFLECTION PSE COMPUTATION:
WOLTER-I CONEFIGURATION

hyperbola parabola

Wolter-l-configuration
® rcduction of the coma aberration

® {0 shorten the focal length
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DOUBLE REFLECTION PSE COMPUTATION:
WOLTER-I CONFIGURATION
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PSF Wolter-1 and parabola comparison at 0.4 keV
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DOUBLE REFLECTION PSE COMPUTATION:
WOLTER-I CONEFIGURATION
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CONCLUSIONS

x \We have applied a self-consistent method to obtain:the PSE from the X-ray
mirror metrology data, at ANY: energy, without setting-any-geometrical
optics/roughness boundary.

x  [he method is consistent with:the ray=tracing(at:energies, where a
posteriori, the geometrical optics can lbe applied) and with the behavior of
the HEW increase obtained from:the X-ray:scattering analytical approach

x [he separate contributions to the HEW from the geometrical profile and

from the microroughness; when summed, are close to the total HEW
(TBC)

x This approach allows to assess the impact of different spatial
wavelengths on the mirror PSE and to understand at which spatial scale
an active X-ray-optic:system: should operate for the best efficiency,
depending on-A.

x [his method Is easily extendable to the double reflection case,
widespread in X-ray telescopes.
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