Magnetic measurements at Budker INP On behalf of BINP magnetic measurement team

20th International Magnetic Measurement Workshop June 4 – 9 2017 <u>I. Okunev</u>

I IFFI

Budker Institute of Nuclear Physics

Siberian Branch of Russian Academy of Science

• Basic research activity

2017 Diamond Light Source

- High energy physics and e⁺e⁻ colliders
- Accelerator physics and technology
- Thermonuclear research
- Theoretical physics

Development and design

Applied research activity

- Synchrotron radiation and FEL
- Industrial accelerators
- Physics for medical application
- Accelerator mass spectrometer

- Experienced scientists can develop any (new) product required by customer from scratch
- A Design Department (100 designers) is equipped with the modern CAD software (AutoCAD, Solid Edge, Inventor, SolidWorks, Cati)

BINP designers are familiar with design standards, tools, procedures of CERN, DESY, BESSY, etc.

The Experimental Workshop

- Comprises 150 technological divisions, sectors and specialized shops placed on the three production areas
- (~ 60 000 m²). About 700 of workers, technologists and engineers work in Workshop.
- ISO 9001:2008 certificate Bureau Veritas
- ■ГОСТ ISO 9001-2011 и ГОСТ РВ 0015-002-2012 (Russia)
- Certificates (TUV, BV, NACW) for welding shop, welders, inspection tests, technologists, etc.

Some magnet types fabricated by BINP

BINP has four setup for magnetic measurements

- One directly at the workshop
 - 1. Measurements by Hall sensors, NMR and rotating coils
- Three at the BINP
 - 1. Hall sensors, NMR, λ -coil, stretched wire
 - 2. Rotating coils, string resonance method and direct current method, Hall sensor for measurements at a temperature of liquid helium
 - 3. Pulsed measurements using the induction method

Hall probe and NMR systems

Hall probe system

Hall probe

Converter dimensions, mm	3×2×0.6
Dimensions of the sensitive zone, mm	0.1×0.05
Input resistance, Ohm	9.8
Output impedance, Ohm	14.2
Residual voltage, μV	45
Magnetic sensitivity at B = 0.1 T, μ V / mT	119.6
The coefficient of nonlinearity at B = 2.0 T,%	-
The divergence coefficient at B = 0.1 T,%	0.07
Temperature coefficient of sensitivity, %/°C	-0.006
Temperature coefficient of residual voltage, μV / ° C:	-0.6
Supply current, mA	100
Operating temperature range, K	1.5÷373

Measuring and control electronics

Analog interface of Hall sensors

Number of channels	32 differentia
Input Range	±250 m\
Common-mode signal range	до ±12 \
Preamplifier gain	$40.000 \div 40.002$
Drift	±1ppm/C
Noise brought to the entrance	2µV/digi
Drift of zero displacement	±30 nV/C
Sensor operating current	99.996±0.001 m/
Current drift	±2ppm/C
Dimensions	2M VMI

Control electronics

Controller BIVME-1	
Description:	
СРО	Motorola MC68EN360
Frequency	32 MHz
RAM	32-bit, 8 /16 Mbytes
ROM	128 Kbytes Boot ROM
Flash memory	8 Mbytes
I/O ports 2: RS-232, 1: Eth	ernet 10base-T

Basic parameters of ADC

Resolution	23 bit	VADC16
Effective bits @ 20ms	20 bit	RUN
Input Range	±10 V	d
Accuracy @ 20°÷ 50°	0.003%	
Zero offset	±20 μV	
Noise @ 20ms	40 μV/digit	
Intervals between measurements	5,10,20,40,80,160 ms	
Min Intervals between measurements when working with VMEHSI	80 ms	
Dimensions	1M VME	

Hall probe stability

2017 Diamond Light Source

Hall sensors power supply current stability

Hall probes stability in zerro magnetic field

Current stability

Temperature stabilization of the Hall sensors

Thermostabilization

The copper base on which the Hall sensors are mounted is equipped with a heater and a temperature sensor for thermostabilization

Parameters

Coordinate measuring machines in magnetic measuring setup

Coordinate measuring machines in magnetic measuring setup

Calibration procedure using the Laser Tracker and CMM - ZEISS Contura G2. This procedure allows you to bind the optical coordinates of the reflectors with position of the Hall sensors.

Example of measurement of the probes radial position using Laser Tracker. Coordinate system tied to fiducial target of the magnet

Software

Magnetic measurement setup based on pulsed NMR methods

The window of the NMR program

	Aluminum powder
Working cores of NMR sensors	Protons, deuterium, ²⁷ AL
Range of measured magnetic fields:	
Sensors based on protons	0.03–3T
Sensors based on deuterium	0.4–18T
Sensors based on aluminum nuclei ²⁷ AL	1–10T
The possibility of measuring the field at the temperature of	Sensors based on aluminun
liquid helium	nuclei ²⁷ AL
Number of channels	4
Minimum measurement time by one channel	~80 ms
Time of measurement by one channel at switching on	2-4 s
"Frequency scanning mode"	
The error in measuring the magnetic field by proton-based	
sensors at a measurement time of 80 ms:	
With a relative field gradient less than 10 ⁻⁴ /cm	less then 2×10 ⁻⁶
With a relative field gradient less than 4×10 ⁻⁴ /cm	less then 10 ⁻⁵
The error in measuring the magnetic field by proton-based	
sensors at a measurement time of 1 s:	
With a relative field gradient less than 10 ⁻⁴ /cm	less then 10 ⁻⁶
With a relative field gradient less than 4×10 ⁻⁴ /cm	less then 3×10 ⁻⁶
The error of measuring the magnetic field by sensors based on	
aluminum nuclei ²⁷ AL at a measurement time of 1 sec:	
For the field 1 T	less then 10 ⁻⁴
For the field 5-10 T	less then 10 ⁻⁵
Cable length from the NMR sensor to the Preamplifier	up to 7 м
Cable length from the Preamplifier to the main magnetometer	up to 150 m

The top picture shows the NMR signal after exposure of the RF excitation pulse.

In the lower picture shows the spectrum of the NMR signal.

The frequency of the NMR is obtained from this spectrum. The magnetic field is calculated from the NMR frequency.

-2

The results of measurements on a test permanent magnet with a field of 0.15 T and a gradient of about 0.2 Gauss/cm

 $(B-B_{CP})/B_{CP}$, ppm 1.5 0.5 -0.5 -1 $\sigma \approx 0.4$ ppm = 4×10⁻⁷ -1.5

The normalized results of the measurements of the magnetic field with the time of one measurement is 100 MS for 5 minutes.

Rotated coil system

Rotating coils setup

Rotating coils setup

Rotating coils setup

Details in IMMW19: "The precise digital integration from microseconds to seconds: theory and implementation"

4th - 9th June 2017, Diamond Light Source

Coils Commutation

$$\Phi_{\Sigma}(\theta) = \frac{\Phi_1(\theta) + \Phi_3(\theta)}{2} - \Phi_2(\theta)$$

$$\Sigma_{\Sigma}(t) = \frac{\varepsilon_1(t) + \varepsilon_3(t)}{2} - \varepsilon_2(t)$$

Details in IMMW19: "The precise digital integration from microseconds to seconds: theory and implementation"

Measurements of the magnetic lens

Details in IMMW19: "The precise digital integration from microseconds to seconds: theory and implementation"

4th - 9th June 2017, Diamond Light Source

Statistic of magnetic axis position for 30 measurements

Standard Deviation:

D(x) = 6,26292E-01 mkm D(y) = 7,13E-01 mkm

Digital integrators VsDC2 and VsDC3

VsDC – Volt-second to Digital Converter

	VsDC2		VsDC3	
	(CAN version)		(VME version)	
# of channels	2		2	
Input voltago rangos	±0.2V; ±0.5V; ±1V;			
input voltage ranges	±2V; ±5V; ±10V		±0.2V; ±2V	
ADC Sample rate	3.2 (1.6*) mks/sample			
ADC resolution	24 bit			
Footprint	3U 4HP Eurocard		6U 4HP Eurocard	

Details in IMMW19: "The precise digital integration from microseconds to seconds: theory and implementation"

System for measuring pulsed magnetic fields

Pulsed field measurement system of the NSLS-II 3 Gev Booster Injection/Extraction channels

Measurement electronics in the NSLS-II Booster service area

Details in IMMW19: "The precise digital integration from microseconds to seconds: theory and implementation"

System for measuring pulsed magnetic fields

Details in IMMW19: "The precise digital integration from microseconds to seconds: theory and implementation"

4th - 9th June 2017, Diamond Light Source

SEPTUM MAGNET

Magnetic field in injection magnet and stray field in vacuum chamber of the booster subject to time.

Distribution of integral of a field on radius in various phases of a feeding impulse.

 $1 - t = 52.5 \ \mu s$, $2 - t = 53.5 \ \mu s$, $3 - t = 54.5 \ \mu s$, $4 - t = 56.5 \ \mu s$.

System for measuring pulsed magnetic fields

Inhomogeneity of the field integral in the bump magnet normalized on field integral in the center for various phases of a current pulse.

une 2017, Diamond Light Source

Integrated value of a bump - 1-4 fields with vacuum chamber and with shunting.

Pulsed field measurement system of the NSLS-II 3 Gev Booster Injection/Extraction channels

BR-XS-Bumps Engineering Screen

• Stability meets the requirements

Stretched wire and λ-coil

The behavior of the 1st horizontal field integral along the wiggler at 5 points on the aperture (X), the measured λ -coil

Stretched wire for superconductive Wigglers

4th - 9th June 2017, Diamond Light Source

- 2 "microXY" 2-axes laser • micrometers
- 0.5 um resolution •
- 1250 measurements/second, all sensors (2 x and 2 z) work simultaneously
- **USB** connection •

Conclusion

- There are widely used all the classic methods of measurement of magnetic field In the BINP
- Electronics developed in BINP allows to conduct experiments at a high international level
- For all measurements we use power supplies designed and assembled by BINP
- For precision transfer of the magnetic axis BINP uses coordinate measuring machine such as a Laser Tracker, ZEISS Contura G2, etc.

Acknowledgement

In this presentation author used articles of the following people:

A.M. Batrakov, A.V. Pavlenko, P.D.Vobly,

A.A. Starostenko, A.N. Zhuravlev, V.A. Kiselev, A.V. Zorin

Additional information

Product groups

PS and electronics

Compact neutron source

Industrial e- accelerators

SC wigglers

ers C e

Cryogenic equipment

e- cooler

RF systems

MW ion injectors

X-ray scanners Turn-key accelerator facilities

High vacuum systems

BNCT

P Magnetts

Dipoles (360 pcs.) and quadrupoles (180 pcs.) for LHC (CERN, 1996-2001)

Quadrupoles for Rutherford Lab. 6t. (10 pcs., Great Britain, 2010)

Radiation resistant dipole 90t. for FAIR (Germany, 2012)

Quadrupoles and sextupoles for SR ALBA (250 pcs., France, 2008)

Dipoles for PETRA III (13 pcs., Germany, 2013)

Quadrupoles SR NSLS II (225 pcs., USA, 2013)

Products Undulators & Wigglers

Undulator for SOLEIL (3 pcs., France, 2009)

Undulator for SLS PSI (2 pcs., Швейцария, 2004)

Undulator (prototype) for XFEL (Germany, 2014)

Dumping wigglers for PETRA III (24 pcs., Germany, 2010)

Typical accuracy to the carriage and Hall sensors

Option	Tolerance		100
The positioning accuracy of the Hall sensors (relative), X, Y, Z	±20 um	1	
The positioning accuracy of the carriage of Hall sensors (absolute), X, Y	±50 (±100) um	- Contraction	
The positioning accuracy of the carriage of Hall sensors (absolute) Z	±0.5 mm		
The deviation of the axis of the sensor relative to the median plane	±20 mrad		
Not parallel to the plane of the carriage and the median plane of the magnet	±0.5 (±1.0) mrad	Параметр	dA/A
Error field measurement by Hall sensor (sensor calibration)	±0.5 Гс	ΔΒ/Β (ΔL/L) ΔG/G	4*10 ⁻⁴ 8*10 ⁻⁴
Error field measurement by Hall sensor (zero sensors)	±0.5 Гс	ΔS/S	1.4*10 -3

Example of calibration of Hall sensors using a NMR sensor

Номер датчика Холла

The NMR sensors and electronics

Additional equipment

The precise digital integration from microseconds to seconds: theory and implementation. A.Batrakov, <u>A.Pavlenko</u>, P.Vagin Octob

IMMW 19 October 25-30, 2015

Measurement of pulsed magnets

The results of measurements of the magnetic field of the superconducting wiggler

4th - 9th June 2017, Diamond Light Source

550

600

Time, s

650 700

750 800

850 900

IMMU20 ителикание инструментати Инструментати Инструментати Инструментали Инструмент Инструментали Инстриментали ИнстриМ Инстриментали Инстриментали Инстриментали Инстриментали Инстриментали Инстриментали Инстриментали Инстриментали Инстриментали Инстриментал

$$I_{first} = I_1 \left(\frac{L}{2}\right) = \delta \alpha * \frac{T}{I} = \frac{T}{I} \left(\frac{\delta x_1}{L_1} + \frac{\delta x_2}{L_2}\right) \text{-first field integral}$$

$$I_{\text{second}} = I_2 \left(\frac{L}{2}\right) = \delta x \cdot \frac{T}{I} = \frac{T}{I} (\delta x^2 - \delta x^1) - \text{second field integral}$$

- + Одновременное измерение |1, |2
- + Измерение мгновенное с точностью до колебаний проволоки
- Уход нулей
- Невысокая чувствительность
- Нельзя изменять высшие интегралы

Positioning of strings

- Z: "8MVT40-13-1" <u>http://standa.it/</u>
- Motorized (stepping motors)
- 1 step = 0.83 nm
- X: manual, resolution 100 um
- In the wiggler the wire is located in 6 mm diameter tube.