Results from the Double Double Bend Achromat Installation

<u>Abolfazl Shahveh</u>, Riccardo Bartolini, Ed Rial, Zena Patel

biernational Magnetic Measurement Workshop

Outline

- The DDBA upgrade of Diamond
- Magnet Measurements and Alignment
- ID measurements

DDBA upgrade in Diamond

One more beamline with no significant gain in emittance

Magnets

Quadrupoles, Gmax=70 T/m L=25 cm

Sextupoles, Smax=2000 T/m² L=17.5 cm (with trim coils)

Dipole A: B=0.8 T, G=-14.4 T/m, L=67 cm | Dipole B: B=0.8 T, G=-14.4 T/m, L=97 cm

Magnetic Measurements

- All measurements done in the manufacturer premises
- Hall probe measurements for Dipoles
- Single Stretch Wire (SSW) measurements for multipoles
- Just for multipoles, manufacturer results remeasured and cross checked during the alignment

- Magnetic field is measured using Hall probe bench
- Trim coils and lateral movement mechanism are fitted for tuning field components
- Particle trajectory is calculated and field is analysed along this trajectory
- Good agreement between simulations and measurements results

Measurements at Danfysik

Good agreement between simulation and measurement results

Black data are based on the integration along parallel arc trajectories. Done at Danfysik **Red: Simulations Blue: Real Trajectory**

BUT THERE IS A PROBLEM...

The Effective length of B and G components are not the same (Quadrupole's Leff is ~16 mm shorter in both types A and B)

By changing current in trim coils, and applying horizontal shift to the every single magnet one can have is:

both $\int B. dS$ and $\int G. dS$ have right values, (at least in theory)

	Parameter	Goal	S/N14206	Error	S/N14207	Error
	Nominal central field strength, By (T)	0.8000	0.8008	0.09%	0.8005	0.07%
	Magnetic Length (m)	0.6700	0.6698	-0.03%	0.6700	0.00%
	Nominal integrated field ∫Byds along the beam axis (Tm)	0.5364	0.5364	0.00%	0.5364	0.00%
	Nominal central transverse field gradient dBy/dx (T/m)	14.3952	14.7452	2.37%	14.7418	2.35%
	Nominal integrated field gradient ∫(dBy/dx)ds along the beam axis (T) (Reference)	9.6510	9.6506	0.00%	9.6514	0.00%
	Trim Coil Current (A) / Shift(mm)		144.261	-1.199	142.420	-1.327
1	Parameter	Goal	S/N14208	Error	S/N14209	Error
-	Nominal central field strength, By (T)	0.8000	0.7930	-0.88%	0.7925	-0.95%
	Magnetic Length (m)	0.9670	0.9754	0.87%	0.9761	0.93%
	Nominal integrated field ∫Byds along the beam axis (Tm)	0.7730	0.7736	0.00%	0.7736	0.00%
	Nominal central transverse field gradient dBy/dx (T/m)	14.3900	14.4951	0.69%	14.4893	0.65%
	Nominal integrated field gradient ∫(dBy/dx)ds along the beam axis (T) (Reference)	13.9192	13.9194	0.00%	13.9201	0.01%
	Trim Coil Current (A) / Shift (mm)		97.012	-0.832	98.318	-0.916
				746	onal Mr Veasur	em '-hop

But during commissioning, it turned out the mechanical shifts were not correct! (As shown by the corrector pattern.)

Therefore to reach a more regular corrector magnet patterns, these H offsets were applied by the following amounts:

Magnet	Applied Shift (Installation)	Correction (Necessary)	Correction (Applied)	Shift (Remaining)
S/N14206	1.199	0.680	0.680	0.519
S/N14207	1.327	0.200	0.000	1.327
S/N14208	0.832	0.480	0.480	0.352
S/N14209	0.916	0.780	0.780	0.136

It is still unclear what is the reason why the calculated shifts were wrong:

wrong path chosen to compute the integrated fields systematic error in positioning of magnetic grid during measured ... WIP

Dipoles:

- > Aligned mechanically using a laser tracker
- Magnet shimming has done in situ
- Alignment target +/-50 um

Difficulties:

- Purely mechanical alignment accuracy is restricted to the laser tracker accuracy (±25 um)
- Very time consuming alignment process (many iterations is needed)

Dipole alignment is done by putting magnetic field mapping data in the right place on the girder by:

- 1- Relating magnetic field map position to twoholes on the bottom pole, using the magneticcone
- 2- Relating two holes positions to three toolingholes on the top of magnet, using CMM report
- 3- Using laser tracker to place tooling holes in

the right place

IMMW20, Diamond Light Source Ltd., Didcot, Oxfordshire, UK, 4-9th June, 2017

13

- Magnetic field is measured using Single Stretch Wire Bench
- Side shims and magnet feet are adjusted to get its centre in the right place as well as its roll, yaw, and pitch less than 0.1 mrad
- Good agreement
 between simulations
 and measurements
 results

Magnetic Measurements

Uncertainties of Stretched-wire measurements

- Laser tracker measurement +/-25um
- Magnetic measurements:

Error	St Dev		
	[µm]		
Mag. Meas. Repeat.	1		
Wire Pos. Repeat.	5		

By Courtesy of: Gaël LE BEC, Advances in Stretched-wire measurements at the ESRF, IMMW19, Hsinchu, Taiwan, October 2015

Magnetic Measurements Concept

$B_r(r, \theta) = \sum_{n=1}^{\infty} C(n) \left(\frac{r}{R_{\text{ref}}}\right)^{n-1} \operatorname{Sin}[n\theta - \alpha_n]$	File Meas Meas
$B_{\theta}(r, \theta) = \sum_{n=1}^{\infty} C(n) \left(\frac{r}{R_{\text{ref}}}\right)^{n-1} \cos[n\theta - \alpha_n]$	File Magr Magr
C(n): Amplitude of 2 n – Pole	Meas
Cartesian Coordinates	an 21.1
$B_{x}(r, \theta) = B_{r} \operatorname{Cos}[\theta] - B_{\theta} \operatorname{Sin}[\theta] = \sum_{n=1}^{\infty} C(n) \left(\frac{r}{R_{\text{ref}}}\right)^{n-1} \operatorname{Sin}[(n-1)\theta - \alpha_{n}]$	49.0 35.8 1.57 24.5 4.59
$B_{y}(r, \theta) = B_{r} \operatorname{Sin}[\theta] + B_{\theta} \operatorname{Cos}[\theta] = \sum_{n=1}^{\infty} C(n) \left(\frac{r}{R_{\text{ref}}}\right)^{n-1} \operatorname{Cos}[(n-1)\theta - \alpha_{n}]$	-1.7 2.50 0.78 -5.1 -2.4
Complex Representation	-0.2
$B(z) = B_{y}(x, y) + i B_{x}(x, y) = \sum_{n=1}^{\infty} \left[C(n) e^{-i\alpha_{n}} \right] \left(\frac{z}{R_{\text{ref}}} \right)^{n-1}$	
	u

ſ	14221_100_PerCent_100A_10.dat - Notepad
	File Edit Format View Help
	Measurement_Date: Fri 4 Sep 2015 Measurement_Time: 08:06:19 File_Index: 10
	Magnet_Type: Sextupole Magnet_Serial_Number: 14221
	Coil_Current: 100 Measurement_Radius: 13
	an bn 21.15 -183.78 49.089 17.056 35.889 48199 1.5701 24.981 24.568 -47.571 4.5951 38.163 -2.9786 -7.6592 -1.703 1.4985 2.5009 -217.4 0.78272 -1.2648 -5.1322 -10.51 -2.4044 7.3017 -0.97202 $0.35404-0.213 -2.4352-2.7221 -171.620$ 0
	$Cn = \sqrt{an^2 + hn^2}$

$$\alpha n = Tan^{-1} (an/bn)$$

Magnetic Measurements QM Results, Field from multipoles

Once the magnets measured, the magnetic field can be reconstructed anywhere inside the circle of measurement

Magnetic Measurements QM Results, Field errors [%]

By extracting the main component, the field errors can be given by the reconstructed field equation

Magnetic Measurements QM Results, By Field errors vs. Current

Field errors around the circle of measurement as a function of current can be seen in the polar plot

19

Magnetic Measurements QM Results, Iso-Error lines

12-Pole error

Sum of Sextupole to Decapole

Magnetic Measurements **QM** Results

on-axis field quality ($< 5 \cdot 10$ -4 in ± 10 mm)

Magnetic Measurements All Multipoles

Statistics over 11 magnets Sum of all higher harmonics @ 100 Amp and r=10 mm

Magnetic Alignments Multipoles

- Stretch Wire bench has been used for the alignment on the complete girder
- Just magnet centre could be measured on the complete girder
- All magnets top has been split and closed once before alignment and then aligned
- Opening and closing magnets top can change the axis position by 1-5 um

Magnetic Alignments Difficulties

- Restrictions due to lots of stuffs on girder which affect on accuracy of alignment
- Magnets assembly/disassembly toques were unknown (all magnets have been spilt once and closed with specific torques then aligned, achieving reproducibility of less than 5 um for magnet centre)
- The location of the stretched wire needs re-evaluating every time it is snapped and/or replaced (But we did not!)
- Using Stretch wire for complete girders is limited to magnetic centre measurements, not axis; then Pitch and Yaw could not be measured (required more accurate post-production measurement)
- Quadrupole remnant field while measuring sextupoles may introduce offsets
- No alternative methods available for verifying the alignment process
- Bench alignments and shimming for every magnet batches is time consuming process..

The Insertion Device: J02

- Sm₂Co₁₇ PPM
- 21 mm period
- 95.5 periods
- 2 m magnetic length
- 5 mm min. gap
- 0.8 T peak field

7-25 keV (0.57 - 2 Å) photons for the VMXm beamline (Macromolecular Crystallography for atomic structure)

JO2 measurements

IMMW20, Diamond Light Source Ltd., Didcot, Oxfordshire, UK, 4-9th June, 2017

lectron trajectory, µm

JO2 measurements

JO2 first light

- J02 installed March 2017
- First light seen on the VMXm beamline April 2017

Beam-based alignment still to be performed

backup

Installation and Alignment Dipoles: Continue...

Alignment Process:

- Magnetic grid position is known wrt pole fiducials
- Pole fiducials position
 - are known wrt yoke
 - fiducials
- Yoke fiducials are
 - known in Girder
 - Coordinates system
 - Then:

