

F. Siewert, J. Buchheim, T. HöftS. Fiedler, G. BourenkovR. Signorato

(HZB / BESSY-II) (EMBL-Hamburg) (Bruker ASC)

Characterization and optimization of adaptive bimorph-mirrors by use of the BESSY-NOM

Layout of EMBL @ PETRA-III beamlines

- 3 Beamlines for structural biology (two for MX, one for BioSAXS) with similar layout but with very different demagnification ratios.
- All equipped with bimorph adaptive mirrors in KB geometry.

elmholtz

Design paramter for the bimorph mirrors

Parameter	BioSAXS VFM	BioSAXS HFM	MX1 VFM	MX1 HFM	MX2 VFM	MX2 HFM
Position from source [m]	45	50	53.25	52.75	59.92	60.4
Focal distance [m]	37 (+0/-5)	32 (+0/-5)	4 (+1.5/- 0.5)	4.5 (+1.5/- 0.5	1.48 (+1.0/-0.01)	1.0 (+1.0/-0.01)
Optical surface [mm ²]	250 x 30 VFMs 400 x 30 HFMs					
Substrate	SiO2					
Coating	SiO2 +Rh				SiO2 +Rh+Pt	
Energy range [keV]	4-20		2	1-17	7-35	
Focal size [micron]	64	200	13	28	7 (1) superpolished	9
No. of electrodes	16 VFMs, 24 HFMs					
Shape	elliptical					
Roughness [Å]	<1.5					
Slope error [µrad]	<1 (w/o optimisation), 0.5 (with optimisation)					

-Beamprofile optimisation needed in "out of focus" position

- Check of slope error at HZB / BESSY-II

Mirror quality and beamline performance

Slope measuring profiler are ideal tools to characterize active and adaptive optics for X-ray application

- long optics > 1m length
- flat or curved
- linking mirror electronics + NOM

Wavefront simulation for a plane mirror at Europ.-XFEL

L. Samoylova, H. Sinn, F. Siewert, H. Mimura, K. Yamauchi, T. Tschentscher, "*Requirements on Hard X-ray Grazing Incidence Optics for European XFEL: Analysis and Simulations of Wavefront Simulations*", Proc. of SPIE 2009

Diamond Light Source, ACTOP 2011 4th - 5th, April 2011

Set-up of the NOM

F. Siewert et al.: "The Nanometer Optic Component Measuring Machine: a new Sub-nm Topography ..." SRI 2003, AIP Conf. Proc.

Optics set-up of the NOM

Direct slope measurement device - no reference surface

F. Siewert et al.: "The Nanometer Optic Component Measuring Machine: a new Sub-nm Topography ..." SRI 2003, AIP Conf. Proc.

NOM-upgrade to enable face side measurements

Diamond Light Source, ACTOP 2011 4th - 5th, April 2011

Inspection and characterization of Bimorphs

Bimorph-mirror with 16 electrodes BIOSAX-VFM for EMBL-Hamburg

The cabling for 16 electrodes

- Each Electrode needs to be characterized individually
- It is time consuming

Diamond Light Source, ACTOP 2011 4th - 5th, April 2011

A LabVIEW – based software for automatic characteriztation of bimorph electrodes

A LabVIEW – based software to enable automatic characteriztation of bimorph electrodes

Inspection and characterization of Bimorphs

Diamond Light Source, ACTOP 2011 4th - 5th, April 2011

Inspection of a super-polished mirror

- an example:

Diamond Light Source, ACTOP 2011 4th - 5th, April 2011

Diffraction limited focusing mirror for SLAC

HZB Helmholtz Zentrum Berlin

Ultra-precise metrology of sub-nm accuracy enable shape preserving alignment of ultimate optical elements

Nanometer accuracy on a macroscopic scale

F. Siewert, J. Buchheim, S. Boutet, R. Signorato, A first diffraction limited KB-focusing mirror pair for the Linac Coherent Light Source – high resolution slope measuring deflectometry for mirror characterization, under preparation to be published

Diamond Light Source, ACTOP 2011 4th - 5th, April 2011

F. Siewert, BESSY-II / INT / Optical Metrology

CORPORATION

Initial simulations of beamprofile with design values for BioSAXS - VFM

- Simulation with Shadow for BioSAXS beamline.
- Simulation assumed 0.5 µrad slope error.
- Xray source size of PETRA III: 6 x 140 μm² (rms)

- Standard type bimorph mirrors can be optimized to $< 0.5 \mu$ rad slope error state
- Automatic characterization of bimorph electrodes can be done over night

 time saving !
- simulations have shown a significant improvement of beamline performance if bimorphs are working as designed
- Superpolished mirrors of 0.05 μrad slope error can be inspected by use of NOM slope measuring profiler
- Tests with super polished bimorph mirror are planned for April / May 2011
- The principle design of bimorphs have not changed for many years, further development is needed for future applications like at XFEL

thanks to:

- L. Samoylova, H. Sinn : European XFEL, Hamburg
- K. Yamauchi : Osaka University, Osaka
 - JTEC Ltd., Kyoto
- S. Boutet : LCLS, Stanford
- for the scientific cooperation