Requirements and major challenges for x -ray optics at NSLS-II

Outline

- NSLS-II
- Optics fabrication lab
- Six project beamlines
- Scientific Interest, technique
- Optics
- Next beamlines
- Status

NSLS-II March 29, 2011

BROOKHAVEN
NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Acknowledgments

Y. Cai

IXS
Inelastic X-ray Scattering

A. Fluerasu CHX Coherent Hard X-ray Scattering

C. Sanchez-Hanke

CSX
Coherent Soft Xray Scattering

J. Thieme SRX
Sub- $\mu \mathrm{m}$ Reso. X-ray Spectrosc.

E. Dooryhee XPD X-ray Powder Diffraction

Y. Chu HXN Hard X-ray Nanoprobe

$$
\begin{aligned}
& \text { R. Conley } \\
& \text { Optics } \\
& \text { Fabrication }
\end{aligned}
$$

NSLS-II: Optimized 3rd Generation SR

- $3 \mathrm{GeV}, 500 \mathrm{~mA}$, Circumference 791 m
- Low emittance: $\varepsilon_{x}=0.55, \varepsilon_{y}=0.008 \mathrm{~nm}-\mathrm{rad}$
- High brightness/flux from soft to hard x-rays
- Pulse length (rms) ~15 psec
- 27 insertion device beamlines
-31 BM / 3PW / IR beamlines
- Full 58 beamlines, plus canted IDs

NSLS-II: Optimized 3rd Generation SR

- $3 \mathrm{GeV}, 500 \mathrm{~mA}$, Circumference 791 m
- Low emittance: $\varepsilon_{x}=0.55, \varepsilon_{y}=0.008$ nm-rad
- High brightness/flux from soft to hard x-rays
- Pulse length (rms) ~15 psec
- 27 insertion device beamlines
-31 BM / 3PW / IR beamlines
- Full 58 beamlines, plus canted IDs

Type of source	Low- β Straight Section $(6.6 \mathrm{~m})$	High- β Straight Section $(9.3 \mathrm{~m})$	0.4T Bend Magnet	1.14T 3-Pole Wiggler
$\sigma_{\mathrm{h}}(\mu \mathrm{m})$	33.3	107	125	167
$\sigma_{\mathrm{h}}{ }^{\prime}(\mu \mathrm{rad})$	16.5	5.1	91	98
$\sigma_{\mathrm{v}}(\mu \mathrm{m})$	2.9	5.2	13.4	12.3
$\sigma_{\mathrm{v}}{ }^{\prime}(\mu \mathrm{rad})$	2.7	1.5	0.80	0.82

High- β Straight Section (9.3m)
 Bending Magnet

Low- β Straight Section (6.6m)

Sources

Optics Fabrication

Optics Fabrication

Optics Fabrication: Recent MLL

- 6,510 layers $\mathrm{WSi}_{2} / \mathrm{Si}$
- Thickness 4-25nm
- 43.3 microns thickness
- $\mathrm{f}=4.2 \mathrm{~mm}$ at 12 keV

CFN $10.0 \mathrm{kV} 5.8 \mathrm{~mm} \times 5.00 \mathrm{~K}$ SE(M,LAO) $10 / 26 / 2010^{\prime} 10: 13^{\prime}$ 10.0um

MLL: Reactive Ion Etching

Reactive Ion Etching
Mixed fluorinated and chlorinated
(Dry Etching)

Be Compound Refractive Lens Assembly

- IEX (CHX, HXN)
- Be parabolic CRL $\approx 1: 1$ vertical.
- Water cooled, $21 \mathrm{~W}, 80^{\circ} \mathrm{C}$
- Integrated white-beam mask

Be CRL by B. Lengeler

Parameters of the Be Compound Refractive Lenses.

$\delta=1-n$	4.09×10^{-6}
Shape	1 D parabolic
R (radius of curvature) $[\mathrm{mm}]$	0.300
d (lens apex thickness) $[\mathrm{mm}]$	0.100
N (number of lenses)	4
FD $=\mathrm{R} /(2 \mathrm{~N} \delta)$) [m]	9.176
p (source-CRL distance) $[\mathrm{m}]$	19.200
q (CRL- focus distance) $[\mathrm{m}]$	17.576

HXN: Scientific Interest, Technique

- Scientific interests: Materials science, environmental science, biology
- Scanning fluorescence \& diffraction imaging using 10 (1) nm spot.
- Low Beta, IVU20, 3 m
- Experimental hutch: $\pm 0.1^{\circ} \mathrm{C}$ (long term), $\pm 0.05^{\circ} \mathrm{C}$ (1 hr period)
- Floor: 1 m concrete

HXN: Beamline Layout

HXN Optics

	Optical Size $(\mathbf{m m})$	Demag.	Angle $(\mathbf{m r a d})$	SE RMS $(\boldsymbol{\mu r a d})$	Size $(\boldsymbol{\mu m})$	Flux $($ Phot/s $)$
Horizontal Colimating	800	$28: \infty$	3.0	0.5		
Horizontal Focusing	800	$\infty: 61.4$	3.0	0.5	174	4.5×10^{13}

- PETRA III transfocator $\times 1.7$
- Vertical focusing to secondary source

Be Transfocator, ESRF results
J. Synchrotron Rad. (2011) 18, 125

Nanofocusing Optics for the HXN Beamline

Capabilities for the HXN X-ray Microscope

- 10 nm spatial resolution (2 mm working distance) using MLL optics
- 30 nm spatial resolution (7~14 mm working distance) using ZP optics

Multilayer Laue Lens (MLL)

- Si (111) provides is sufficient monochromaticity for 10 nm focusing.

Nanofocusing Optics for the HXN Beamline

Capabilities for the HXN X-ray Microscope

- 10 nm spatial resolution ($\sim 2 \mathrm{~mm}$ working distance) using MLL optics
- 30 nm spatial resolution (7~14 mm working distance) using ZP optics

Yan, et al, PRB 76115438 (2007)

Multilayer Laue Lens (MLL)

- Si (111) provides is sufficient monochromaticity for 10 nm focusing.

Nanofocusing Optics for the HXN Beamline

Capabilities for the HXN X-ray Microscope

- 10 nm spatial resolution (2 mm working distance) using MLL optics
- 30 nm spatial resolution (7~14 mm working distance) using ZP optics

Yan, et al, PRB 76115438 (2007)

Multilayer Laue Lens (MLL)

- Si (111) provides is sufficient monochromaticity for 10 nm focusing.

Optic type	resolution (nm)	energy (keV)	size/ diameter ($\mu \mathrm{m}$)	depth of focus ($\mu \mathrm{m}$)	focal length (mm)	working distance (mm)	2D efficiency
tilted flat MLLs	10	10~25	124 at 10 keV 62 at 20 keV	3.2 at 10 keV 6.4 at 20 keV	10	2	2.9% at 10 keV 4.4% at 20 keV
wedged MLL	10	10~25	50 at10keV 25 at 20 keV	3.2 at 10 keV 6.4 at 20 keV	4	2	45% at 10 keV 45% at 10 keV
ZP	30	6~12	150	$\begin{gathered} 17.4 \text { at } 6 \mathrm{keV} \\ 34.8 \text { at } 12 \mathrm{keV} \end{gathered}$	21.8 at 6 keV 43.5 at 12 keV	$\begin{gathered} \sim 7 \text { at } 6 \mathrm{keV} \\ \sim 14 \text { at } 12 \mathrm{keV} \end{gathered}$	$\sim 2 \%$ at 10keV

Nanofocusing Optics for the HXN Beamline

Capabilities for the HXN X-ray Microscope

- 10 nm spatial resolution (\sim mm working distance) using MLL optics
- 30 nm spatial resolution (7~14 mm working distance) using ZP optics

Yan, et al, PRB 76115438 (2007)

Achieved $25 \times 27 \mathrm{~nm} 2 \mathrm{D}$ focusing at APS 26-ID using $\sim 20 \mu \mathrm{~m}$ MLLs (drN=5nm. ideal focus $\sim 12.5 \times 12.5 \mathrm{~nm}$)

- Si (111) provides is sufficient monochromaticity for 10 nm focusing.

Optic type	resolution (nm)	energy (keV)	size/ diameter ($\mu \mathrm{m}$)	depth of focus ($\mu \mathrm{m}$)	focal length (mm)	working distance (mm)	2D efficiency
tilted flat MLLs	10	10~25	124 at 10 keV 62 at 20 keV	3.2 at 10 keV 6.4 at 20 keV	10	2	2.9% at 10 keV 4.4% at 20 keV
wedged MLL	10	10~25	50 at10keV 25 at 20keV	3.2 at 10 keV 6.4 at 20 keV	4	2	45% at 10 keV 45% at 10 keV
ZP	30	6~12	150	$\begin{gathered} 17.4 \text { at } 6 \mathrm{keV} \\ 34.8 \text { at } 12 \mathrm{keV} \end{gathered}$	21.8 at 6 keV 43.5 at 12 keV	$\begin{gathered} \sim 7 \text { at } 6 \mathrm{keV} \\ \sim 14 \text { at } 12 \mathrm{keV} \end{gathered}$	$\sim 2 \%$ at 10keV

CHX: Scientific Interest, Technique

- Scientific interest: Structure and dynamics of complex materials at molecular scales. Soft matter, biological materials, glasses, inorganics
- Low Beta, IVU20, 3 m, will take $4 x 4$ coherent modes (2-10\%)
- XPCS; $\mathrm{E}=6-15 \mathrm{keV}$; flux>1011 ph / s mono, $>10^{12} \mathrm{ph} / \mathrm{s}$ pink beam
- SAXS, WAXS, GI-SAXS
- Full-field CDI and μ-beam-SAXS

CHX: Beamline Layout I

Be Transfocator
J. Synchrotron Rad. (2011). 18, 125

CHX: Beamline Layout II

Si kinoforms
K. Evans-Lutterodt et al.
J. Synchrotron Rad. (2010) 17, 314

CHX Optics

SRX: Scientific Interest, Technique

- Scientific interest: Sub-micron imaging and spectroscopy of elemental distribution in chemical and energy science, materials science, earth and environmental science, life science.
- Low Beta, IVU21,1.5 m
- Energy range $4.65 \mathrm{keV} \leq \mathrm{E} \leq 23 \mathrm{keV}$, flux $>10^{13} \mathrm{phot} / \mathrm{sec}$.

SRX: Beamline Layout

Source aperture matched to acceptance of HF-KB mirrors: $51.6 \mu \mathrm{rad} \times 24.5 \mu \mathrm{rad}(\mathrm{H} \mathrm{x} \mathrm{V})$

SRX Optics

	Optical Size (mm)	Demag.	Angle (mrad)	SE RMS $(\boldsymbol{\mu r a d})$	Size $(\boldsymbol{\mu m})$	Flux $($ Phot/s $)$
HFM: Elliptical Cylinder	680	$33: 17$	2.5	$0.5(0.3)$		
KBVF: Elliptical Cylinder (Bender)	350	$65: 0.7$	3.5	$0.3(0.1)$	0.7	
KBHF: Elliptical Cylinder (Bender)	300	$16: 0.3$	3.5	$0.3(0.1)$	0.9	$>10^{13}$
KBVH: Elliptical Cylinder	142	$66: 0.14$	2.5	$0.1(?)$	$0.036(\mathrm{DL})$ $(12 \mathrm{keV})$	
KBHF: Elliptical Cylinder	60	$16: 0.06$	2.5	$0.1(?)$	$0.036(\mathrm{DL})$ $(12 \mathrm{keV})$	$11^{111}-10^{12}$

IXS: Scientific Interest, Technique

- Scientific interest: Liquids, disordered systems, biological systems and phonons.
- Inelastic X-ray scattering at 9.1 keV with $\Delta \mathrm{E}<1 \mathrm{meV}(0.1 \mathrm{meV})$
- High Beta, IVU22, 3.0 m
- Flux at sample > 10^{9} photons $/ \mathrm{sec} / 1 \mathrm{meV}$
- Q range / resolution: $0.1 \sim 40 \mathrm{~nm}^{-1} / \sim 0.1 \mathrm{~nm}^{-1}$
- Focus: ~ $<5 \mu \mathrm{~m}(\mathrm{~V}) \times 10 \mu \mathrm{~m}(\mathrm{H})$

IXS: Beamline Layout

IXS Optics

	Optical Size (mm)	Demag.	Angle $(\mathbf{m r a d})$	SE RMS $(\boldsymbol{\mu r a d})$	Size $(\boldsymbol{\mu m})$	Flux $($ Phot/s $)$
KBV: Elliptical Cylinder (Bender)	940	$19: 2$	3.5	0.5	10	
KBH: Elliptical Cylinder (Bender)	780	$57: 1$	3.5	0.5	5	$\approx 109 / \mathrm{eV}$

- Montel with laterally graded W/Si
- Collects $10 \times 10 \mathrm{mrad}^{2}$
- Collimates for CDDW detector to $0.1 \times 0.1 \mathrm{mrad}^{2}$

Latest CDW-CDW Results from X16A

- Achieved energy resolution: ~ 2.6 meV with sharp tails
- Efficiency of one CDW unit: $I_{A} / l_{M}>1.5 \%$

XPD: Scientific Interest, Technique

- Scientific interest: Powders and nanostructures, extreme environments, time-resolved and total scattering studies.
- 30-80 keV: Powder diffraction \& WAXS
- High Beta, Damping wiggler, 100 mm period, 7 m long, 61 kW
- High flux at sample $>10^{12} \mathrm{ph} / \mathrm{s}$ in variable $0.5-2 \mathrm{~mm}$ focus
- Operation modes: $\Delta \mathrm{E} / \mathrm{E} \sim 10^{-3}$ (high flux) or 2×10^{-4} (high resolution)

XPD: Beamline Layout

XPD Optics

	Optical Size $(\mathbf{m m})$	Demag.	Angle $(\mathbf{m r a d})$	SE RMS $(\boldsymbol{\mu r a d})$	Size $(\boldsymbol{\mu m})$	Flux $($ Phot/s $)$
Elliptical Cylinder - Flat	1300	$40: 14$	$1-2$	$1.2(0.5)$	55 1500	$510^{12}(0.1 \%)$ $10^{12}(0.01 \%)$

- Double Laue Monochromator (Zhong)
- Energy tunability : 30-80 keV
- Sagittal focusing $500 \mu \mathrm{~m}$
- Beam stability under large thermal load

113 reflection, provided $10^{11} \mathrm{ph} / \mathrm{s}$ at 67 keV with a focal length of
5.6 meters. Focuses 40 mm -wide beam to 0.5 mm (horizontal)

CSX: Scientific Interest, Technique

- Scientific interest: Ferromagnets, strongly correlated systems, oxides, functional multilayers, soft matter, polymers, multifunctional materials, magnetic systems and fast magnetic dynamics
- Coherent diffraction/scattering, phase retrieval imaging, spectroscopy (XMCD), and magnetic scattering
- Low Beta, $2 \times$ APPLE II, 49 mm period, 2 m each. Canted or phased
- Flux PB: > 10^{13} photons $/ \mathrm{s} / 0.01 \% \mathrm{CB}:>10^{13}$ photons $/ \mathrm{s} / 0.1 \%$

CSX: Beamline Layout

CSX: Beamline Layout

CSX Optics, FPB

	Optical Size (mm)	Demag.	Angle (deg)	SE RMS $(\boldsymbol{\mu r a d})$	Size $(\boldsymbol{\mu m})$	Flux $($ Phot/s $)$
Toroid 1	250	$33: 21$ $33: \infty$	1.25	$0.5(1)$	70 (hor.)	
Toroid 2	250	$31: 21$ $31: \infty$	1.25	$0.5(1)$	70 (hor.)	
Plane in Mono	400		Var	0.5%		
Gratings, VLS	120	$32: 7$ (With Ceff)	Var	0.1	$18(250 \mathrm{eV})$ $13(1 \mathrm{keV})$	
Spherical	150	$3: 3$	1.25	$0.3(0.5)$	8 $(10 \mu \mathrm{~m} \mathrm{slit})$	10^{13} $\left(10^{4} \mathrm{RP}\right)$

CSX Optics, CB

	Optical Size (mm) $)$	Demag.	Angle $(\mathbf{d e g})$	SE RMS $(\boldsymbol{\mu r a d})$	Size $(\boldsymbol{\mu m})$	Flux $($ Phot/s $)$
Plane	200	1.25	0.2			
Plane in Mono	400	Var	0.2			
Gratings, VLS	120	$40: 13 \pm 2$ $($ with Ceff)	Var	0.1	$25(200 \mathrm{eV})$ $15(1 \mathrm{keV})$	
Bendable Elliptical cylinder	300	$41: 13 \pm 2$	1.25	$0.3(0.6)$	$30(200 \mathrm{eV})$ $28(1 \mathrm{keV})$	1013 $(\mathrm{RP} 2000)$

NEXT Beamlines (all ID based)

ESM: Electron Spectro-Microscopy (2 EPUs)
ARPES, PEEM, APP 20 eV-2 keV
SIX: Soft Inelastic X-ray Scattering
RIXS: 10 meV at 1 keV and medium resolution
ISS: Inner Shell Spectroscopy (DW)
XAS, XES, XELS
FXI: Full-field X-ray Imaging from $\mu \mathrm{m}$ to nm (SCW)
TXM, full field imaging
ISR: Integrated In-Situ \& Resonant X-Ray Studies (IVU)
Resonant: x-ray scattering, x-ray diffraction, linear circular polarization
SMI: Soft Matter Interfaces (IVU)
x-ray reflectivity, Gl x-ray scattering, and anomalous/resonance techniques

- CD1 Review September 2011
- Group leader positions will opening soon

NIH + Type II + Nxt Gen

- NIH + NSLS-II will develop 3 beamlines for life sciences
- Two NIST
- SST: Soft and Tender X-ray Spectroscopy and Microscopy - 6 stations, 2 from $100 \mathrm{eV}-7.5 \mathrm{keV}$
- BMM: Hard X-ray Absorption Spectroscopy and Diffraction Beamline for Materials Measurements
- NYSBC
- NYX: Microdiffraction Beamline
- 14 beamlines to be transferred from NSLS

Status

- Halfway mark in project completion
- Beneficial occupancy of first pentant
- First girder assembly in the building
- SOW being written for the beamlines
- 2014 CD4 project beamlines
- Project end

Status

- Halfway mark in project completion
- Beneficial occupancy of first pentant
- First girder assembly in the building
- SOW being written for the beamlines
- 2014 CD4 project beamlines
- Project end

Thank you for your attention

