Calibration of a Hall Probe Array IMMW 20

6th June 2017 | Jan Henry Hetzel | Institut für Kernphysik 4, FZ-Jülich
Presentation for HEDI - Measurement of the HESR Dipoles: U. Bechstedt, J. Böker, C.
Ehrlich, I. Engin, J. Hetzel, S. Quilitzsch, H. Soltner, P. Tripathi

Table of Contents

Introduction

Theoretical Description

Results

The "Rotating Hall Probes" Device

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

The "Rotating Hall Probes" Device

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

The "Rotating Hall Probes" Device

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

The "Rotating Hall Probes" Device

This talk: Just give an idea of used calibration method. So just probes in radial direction, up to first order.

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

Objective of Calibration Campaign

Estimate relevant quantities

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

$$
(i=0, . ., N-1)
$$

- Roll angle α_{i}

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

$$
(i=0, . ., N-1)
$$

- Roll angle α_{i}

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

$$
(i=0, . ., N-1)
$$

- Roll angle α_{i}
- Pitch angle β_{i}

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

$$
(i=0, . ., N-1)
$$

- Roll angle α_{i}
- Pitch angle β_{i}

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

$$
(i=0, . ., N-1)
$$

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

$$
(i=0, . ., N-1)
$$

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

$$
(i=0, . ., N-1)
$$

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- angular position φ_{i}
- radial position
$R+r_{i}$
- proportionality

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities
($i=0, . ., N-1$)
Outer Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- angular position φ_{i}
- radial position
$R+r_{i}$
- proportionality

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality
($i=0, . ., N-1$)
- angular position φ_{i}
- radial position
$R+r_{i}$

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality
($i=0, . ., N-1$)
- angular position φ_{i}
- radial position
$R+r_{i}$

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality
($i=0, . ., N-1$)
- angular position φ_{i}
- radial position $R+r_{i}$

Outer Quantities

- Roll angle A
- Pitch angle B

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality
($i=0, . ., N-1$)
- angular position φ_{i}
- radial position $R+r_{i}$

Outer Quantities

- Roll angle A
- Pitch angle B

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality
($i=0, . ., N-1$)
- angular position φ_{i}
- radial position $R+r_{i}$

Outer Quantities

- Roll angle A
- Pitch angle B
- Yaw angle 「

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality
($i=0, . ., N-1$)
- angular position φ_{i}
- radial position $R+r_{i}$

Outer Quantities

- Roll angle A
- Pitch angle B
- Yaw angle 「

Objective of Calibration Campaign

Estimate relevant quantities

View from TOP

Inner Quantities

- Roll angle α_{i}
- Pitch angle β_{i}
- Yaw angle γ_{i}
- proportionality
($i=0, . ., N-1$)
- angular position φ_{i}
- radial position $R+r_{i}$

Outer Quantities

- Roll angle A
- Pitch angle B
- Yaw angle 「

Principle

Estimate angles from Harmonic measurements in "conventional" resistive dipoles and quadrupoles.

Principle

Estimate angles from Harmonic measurements in "conventional" resistive dipoles and quadrupoles.

Measurement

Example of one measurement in the dipole

all 8 probes, r-direction, 512 angular positions
\Rightarrow needed for analysis: model of measurement

Model

Measured value $U^{\prime}(\vec{x})$:

$$
U^{\prime}(\vec{x})=\frac{\vec{B}(\vec{x})}{u} \cdot \vec{n}_{\text {probe }}(\vec{x})+U_{0}
$$

proportionality factor: u
zero gauss offset: U_{0}
probe orientation: $\vec{n}_{\text {probe }}$
B field at probe position $\vec{x}: \vec{B}(\vec{x})$

Model

$$
U_{i}\left(\vec{x}_{i}\right):=\left(U_{i}^{\prime}-U_{0, i}\right)=\frac{1}{u_{i}} B\left(\vec{x}_{i}\right) \cdot \vec{n}_{i}
$$

Orientation of probe i:

$$
\begin{aligned}
& \vec{n}_{i}=\mathbf{M}_{\mathrm{yaw}, \Gamma} \cdot \mathbf{M}_{\mathrm{pitch}, B} \cdot \mathbf{M}_{\mathrm{roll}, A} \cdot \mathbf{M}\left(\phi+i \cdot \frac{\pi}{4}\right) \cdot \mathbf{M}_{\varphi, i} \cdot \mathbf{M}_{\mathrm{y} \cdot, \gamma, i} \cdot \mathbf{M}_{\mathrm{p} \cdot, \beta, i} \cdot \mathbf{M}_{\mathrm{r}, \alpha, i} \cdot \overrightarrow{\boldsymbol{e}} \\
& \vec{e}=(1,0,0)^{T}
\end{aligned}
$$

Model

Order of multiplication defines interpretation of angles.

$$
\vec{n}_{i}=\mathbf{M}_{\mathrm{yaw}, \Gamma} \cdot \mathbf{M}_{\mathrm{pitch}, B} \cdot \mathbf{M}_{\mathrm{roll}, A} \cdot \mathbf{M}\left(\phi+i \cdot \frac{\pi}{4}\right) \cdot \mathbf{M}_{\varphi, i} \cdot \mathbf{M}_{\mathrm{y} \cdot, \gamma, i} \cdot \mathbf{M}_{\mathrm{p} ., \beta, i} \cdot \mathbf{M}_{\mathrm{r} ., \alpha, i} \cdot \overrightarrow{\boldsymbol{e}}
$$

Order is chosen such that

$$
\mathbf{M}_{\mathrm{roll}, A} \cdot \mathbf{M}\left(\phi+i \cdot \frac{\pi}{4}\right) \cdot \mathbf{M}_{\varphi, i}
$$

can be combined to one rotation with angle $\phi+A+\varphi_{i}+i \cdot \frac{\pi}{4}$.

Model

Order of multiplication defines interpretation of angles.

$$
\vec{n}_{i}=\mathbf{M}_{\mathrm{yaw}, \Gamma} \cdot \mathbf{M}_{\mathrm{pitch}, \beta} \cdot \mathbf{M}_{\mathrm{roll}, A} \cdot \mathbf{M}\left(\phi+i \cdot \frac{\pi}{4}\right) \cdot \mathbf{M}_{\varphi, i} \cdot \mathbf{M}_{\mathrm{y} ., \gamma, i} \cdot \mathbf{M}_{\mathrm{p} . \beta, i, i} \cdot \mathbf{M}_{\mathrm{r}, \alpha, i, i} \cdot \overrightarrow{\boldsymbol{e}}
$$

Order is chosen such that

$$
\mathbf{M}_{\mathrm{roll}, A} \cdot \mathbf{M}\left(\phi+i \cdot \frac{\pi}{4}\right) \cdot \mathbf{M}_{\varphi, i}
$$

can be combined to one rotation with angle $\phi+\boldsymbol{A}+\varphi_{i}+i \cdot \frac{\pi}{4}$.
Further simplification: Shift angle of measurements by $-i \cdot \frac{\pi}{4}$

Model

Order of multiplication defines interpretation of angles.
$\vec{n}_{i}=\mathbf{M}_{\mathrm{yaw}, \Gamma} \cdot \mathbf{M}_{\mathrm{pitch}, B} \cdot \mathbf{M}_{\mathrm{roll}, \boldsymbol{A}} \cdot \mathbf{M}(\phi) \cdot \mathbf{M}_{\varphi, i} \cdot \mathbf{M}_{\mathrm{y} \cdot, \gamma, i} \cdot \mathbf{M}_{\mathrm{p}, \beta, i} \cdot \mathbf{M}_{\mathrm{r} ., \alpha, i} \cdot \overrightarrow{\boldsymbol{e}}$
Order is chosen such that

$$
\mathbf{M}_{\mathrm{roll}, \boldsymbol{A}} \cdot \mathbf{M}(\phi) \cdot \mathbf{M}_{\varphi, i}
$$

can be combined to one rotation with angle $\phi+A+\varphi_{i}$.

Further simplification: Shift angle of measurements by $-i \cdot \frac{\pi}{4}$

Measurement

Example of one measurement in the dipole

Measurement

Example of one measurement in the dipole

Model

$$
U_{i}(\phi)=\frac{1}{u_{i}} \vec{B}\left(\vec{x}_{i}(\phi)\right) \cdot \vec{n}_{i}(\phi)
$$

description of \vec{B} :
perfect dipole: $\vec{B}_{1}=(0, B, 0)^{\mathrm{T}}$
perfect quadrupole: $\vec{B}_{2}=g \cdot\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \cdot \vec{x}(\phi)$
perfect sextupole: $\vec{B}_{3}=m \cdot\left(2 x_{1}(\phi), x_{1}^{2}(\phi)+x_{2}^{2}(\phi), 0\right)^{\mathrm{T}}$
more realistic dipole: $\vec{B}=\vec{B}_{1}+\vec{B}_{3}$

Model

$$
U_{i}(\phi)=\frac{1}{u_{i}} \vec{B}\left(\vec{x}_{i}(\phi)\right) \cdot \vec{n}_{i}(\phi)
$$

Position of probe i:

$$
\vec{x}_{i}(\phi)=\mathbf{M}_{\mathrm{yaw}, \Gamma} \cdot \mathbf{M}_{\mathrm{pitcch}, B} \cdot \mathbf{M}\left(A+\phi+\varphi_{i}\right) \cdot\left(\begin{array}{c}
R+r_{i} \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)
$$

Model

$$
U_{i}(\phi)=\frac{1}{u_{i}} \vec{B}\left(\vec{x}_{i}(\phi)\right) \cdot \vec{n}_{i}(\phi)
$$

This is now to be expressed in Fourier coefficients:

$$
U_{i}(\phi)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k \phi)+b_{k} \sin (k \phi)
$$

Model

$$
U_{i}(\phi)=\frac{1}{u_{i}} \vec{B}\left(\vec{x}_{i}(\phi)\right) \cdot \vec{n}_{i}(\phi)
$$

This is now to be expressed in Fourier coefficients:

$$
U_{i}(\phi)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k \phi)+b_{k} \sin (k \phi)
$$

Simplifying assumption: all imperfections are of same order of magnitude ξ
\rightarrow use Taylor expansion up to order $\mathcal{O}\left(\xi^{n}\right)$

Fourier Coefficients

Radial probes, first order $\mathcal{O}(\xi)$
(perfect) Dipole:

$$
\begin{aligned}
& a_{0, D, i}=0 \\
& a_{1, D, i}=\left(A+\varphi_{i}+\alpha_{i}\right) \cdot \frac{B}{u_{i}} \\
& b_{1, D, i}=1 \cdot \frac{B}{u_{i}}
\end{aligned}
$$

Quadrupole:

$$
a_{0, Q, i}=0
$$

$$
\begin{aligned}
& a_{1, Q, i}=\frac{g}{u_{i}}\left(y_{0}+\left(A^{\prime}+\varphi_{i}+\alpha_{i}\right) \cdot x_{0}\right) \\
& b_{1, Q, i}=\frac{g}{u_{i}}\left(-\left(A^{\prime}+\varphi_{i}+\alpha_{i}\right) \cdot y_{0}+x_{0}\right) \\
& a_{2, Q, i}=\frac{g}{u_{i}}\left(R+r_{i}\right) \cdot\left(2 A^{\prime}+2 \varphi_{i}+\alpha_{i}\right) \\
& b_{2, Q, i}=\frac{g}{u_{i}}\left(R+r_{i}\right)
\end{aligned}
$$

remaining task

Combine measured Fourier coefficients to estimate angles.

Caveat

Mismatch of "outer" roll angle A

Caveat

Mismatch of "outer" roll angle A

Caveat

Mismatch of "outer" roll angle A

Solution

Use field to find orientation

Fourier coefficients

Dipole:
$a_{1, D, i}=\left(A+\varphi_{i}+\alpha_{i}\right) \cdot \frac{B}{u_{i}}$
Quadrupole:
$a_{1, Q, i}=\frac{g}{u_{i}}\left(y_{0}+\left(A^{\prime}+\varphi_{i}+\alpha_{i}\right) \cdot x_{0}\right)$
Reminder: Rotation around longitudinal axis $\propto A+\varphi_{i}+\phi$ \Rightarrow Mismatch of A can be "absorbed" in initial ϕ

Shift angle of measurements, such that in Dipole:

$$
a_{1, D, 0}=0
$$

Problem solved I

Mismatch of "outer" roll angle A in dipole

Solution

Use field to find orientation

Fourier coefficients

Dipole:
$a_{1, D, i}=\left(\boldsymbol{A}+\varphi_{i}+\alpha_{i}\right) \cdot \frac{B}{u_{i}}$
Quadrupole:

$$
a_{1, Q, i}=\frac{g}{u_{i}}\left(y_{0}+\left(A^{\prime}+\varphi_{i}+\alpha_{i}\right) \cdot x_{0}\right)
$$

Wanted: $A=A^{\prime}$
already aligned: $a_{1, D, 0}=0$ Consequently: $a_{1, Q, 0} \stackrel{!}{=} \frac{g}{u_{i}} y_{0}$ or

$$
a_{1, Q, 0}\left(x_{0}\right)=\text { const. }
$$

Multiple Measurements at Different Horizontal Positions

choose initial ϕ such, that
$a_{1, Q, 0}=$ const.
Boundary condition:

$$
\frac{a_{2, Q, 0}}{b_{2, Q, 0}}=2 A^{\prime}+\alpha_{0}
$$

same for all measurements.

Multiple Measurements at Different Horizontal Positions

Example

Desired initial ϕ can be found by

$$
\phi=-\frac{\frac{\partial a_{1, Q, 0}}{\partial x_{0}}\left(x_{0}\right)}{\frac{\partial b_{1, Q, 0}}{\partial x_{0}}\left(x_{0}\right)}=-\left(A^{\prime}+\alpha_{0}\right)
$$

Problem Solved II?

Mismatch of "outer" roll angle A in dipole and quadrupole

Problem Solved II?

Main source of systematic errors

- displacement has to be carefully matched to horizontal axis
- rely on just a few measurements
- higher order multipoles especially in the outer regions present

Problem Solved II?

Main source of systematic errors

- displacement has to be carefully matched to horizontal axis
- rely on just a few measurements
- higher order multipoles especially in the outer regions present

I Want You!

Better ideas of how to align measurements in dipole and quadrupole welcome.

Combination of Measured Coefficients

Radial probes $\mathcal{O}(\xi)$

$$
\begin{gathered}
\alpha_{i}=2 \frac{a_{1, D, i}}{b_{1, D i}}-\frac{a_{2, Q, i}}{b_{2, Q, i}} \\
\phi_{i}=\frac{a_{2, Q, i}}{b_{2, Q, i}}-\frac{a_{1, D, i}}{b_{1, D, i}}+\alpha_{0} \\
R+r_{i}=\frac{b_{2, Q, i}}{\frac{\partial b_{1, Q, i}}{\partial x_{0}}\left(x_{0}\right)}
\end{gathered}
$$

Knowledge of proportionality factors u_{i} not needed at this stage.
Redundancy between A and one out of $3 \times 8 \varphi_{i} \Rightarrow$ set $\varphi_{0}=0$ for radial probe.

Results

Radial probes

Systematic Uncertainties

- During measurement: "Flip and repeat"
- $\xi_{\text {max }} \approx 0.02 \mathrm{rad} \Rightarrow \mathcal{O}\left(\xi^{2}\right) \approx 5 \cdot 10^{-4} \mathrm{rad}$
- sextupole contribution, $\mathcal{O}(\xi)$):

$$
\begin{gathered}
a_{1} \cdot u=m \cdot\left(2 x y+(A+\varphi+\alpha)\left(x^{2}+y^{2}\right)+(R+r)^{2} A\right) \\
b_{3} \cdot u=m \cdot(R+r)^{2}
\end{gathered}
$$

even for maximum measured b_{3} correction to $a_{1}=\mathcal{O}\left(x^{2}\right)$

Conclusion \& Outlook

- successfully determined positions and roll angles of angular probes to first order
- determine proportionality factors u_{i} by comparison with NMR measurements
- determine remaining angles by using second order
- determine remaining angles by additional measurements in solenoid

Acknowledgement

We would like to thank the whole TE-MSC-MM group of CERN and especially Marco Buzio, for enabling us to work at the CERN magnets and sharing their ideas.

