

Calibration of a Hall Probe Array

6th June 2017 | Jan Henry Hetzel | Institut für Kernphysik 4, FZ-Jülich Presentation for HEDI - Measurement of the **HE**SR **Di**poles: U. Bechstedt, J. Böker, C. Ehrlich, I. Engin, J. Hetzel, S. Quilitzsch, H. Soltner, P. Tripathi

Table of Contents

Introduction

Theoretical Description

Results

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

This talk: Just give an idea of used calibration method. So just probes in radial direction, up to first order.

- Purpose: measurement of multipole components
- Array of 8 3D-Hall probes
- Rotatable by Piezo-Motor
- Diameter of Disc 80 mm
- Technical details: (Talk to us, we're here)
- Problem: Conventional calibration methods not possible (dimension of device!)

Estimate relevant quantities

X/a.u.

Estimate relevant quantities

Inner Quantities

$$(i = 0, .., N - 1)$$

Roll angle α_i

Estimate relevant quantities

Inner Quantities

$$(i = 0, .., N - 1)$$

Roll angle α_i

Estimate relevant quantities

Inner Quantities

(i = 0, .., N - 1)

- Roll angle α_i
- Pitch angle β_i

Estimate relevant quantities

Inner Quantities

(i = 0, .., N - 1)

- Roll angle α_i
- Pitch angle β_i

Estimate relevant quantities

Inner Quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

(i = 0, ..., N - 1)

Estimate relevant quantities

Inner Quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

(i = 0, ..., N - 1)

Estimate relevant quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

- (i = 0, .., N 1)
- angular position φ_i
- radial position $R + r_i$

Estimate relevant quantities

Inner Quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

(i = 0, .., N - 1)

Outer Quantities

- angular position φ_i
- radial position $R + r_i$

Estimate relevant quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

- (i = 0, .., N 1)
- angular position φ_i
- radial position $R + r_i$

- Outer Quantities
- Roll angle A

Estimate relevant quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

- (i = 0, .., N 1)
- angular position φ_i
- radial position $R + r_i$

- Outer Quantities
- Roll angle A

Estimate relevant quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

- (i = 0, .., N 1)
- angular position φ_i
- radial position $R + r_i$

- **Outer Quantities**
- Roll angle A
- Pitch angle B

Estimate relevant quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

- (i = 0, .., N 1)
- angular position φ_i
- radial position $R + r_i$

- **Outer Quantities**
- Roll angle A
- Pitch angle B

Estimate relevant quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality $\begin{array}{c} \text{6th June 2017} \\ \text{factor } u_i := B/U_i \end{array}$

- (i = 0, ..., N 1)
- angular position φ_i
- radial position $R + r_i$

- **Outer Quantities**
- Roll angle A
- Pitch angle B
- Yaw angle **F**

Estimate relevant quantities

Inner Quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- Proportionality ^{6th June 2017} factor $u_i := B/U_i$

- (i = 0, .., N 1)
- angular position φ_i
- radial position $R + r_i$

- **Outer Quantities**
- Roll angle A
- Pitch angle B
- Yaw angle Г

Member of the Helmholtz-Association

Estimate relevant quantities

- Roll angle α_i
- Pitch angle β_i
- Yaw angle γ_i
- proportionality 6th June 2017 factor $u_i := B/U_i$

- (i = 0, .., N 1)
- angular position φ_i
- radial position $R + r_i$

- **Outer Quantities**
- Roll angle A
- Pitch angle B
- Yaw angle Г

Principle

Estimate angles from Harmonic measurements in "conventional" resistive dipoles and quadrupoles.

Principle

Estimate angles from Harmonic measurements in "conventional" resistive dipoles and quadrupoles.

Measurement

Example of one measurement in the dipole

all 8 probes, *r*-direction, 512 angular positions \Rightarrow needed for analysis: model of measurement

6th June 2017

Jan Henry Hetzel

Measured value $U'(\vec{x})$:

$$U'(ec{x}) = rac{ec{B}(ec{x})}{u} \cdot ec{n}_{ ext{probe}}(ec{x}) + U_0$$

proportionality factor: *u* zero gauss offset: U_0 probe orientation: \vec{n}_{probe} *B* field at probe position \vec{x} : $\vec{B}(\vec{x})$

$$U_i(\vec{x}_i) := (U'_i - U_{0,i}) = \frac{1}{u_i} B(\vec{x}_i) \cdot \vec{n}_i$$

Orientation of probe i:

$$\vec{n}_{i} = \mathbf{M}_{\text{yaw},\Gamma} \cdot \mathbf{M}_{\text{pitch},B} \cdot \mathbf{M}_{\text{roll},A} \cdot \mathbf{M} \left(\phi + i \cdot \frac{\pi}{4} \right) \cdot \mathbf{M}_{\varphi,i} \cdot \mathbf{M}_{\text{y}.,\gamma,i} \cdot \mathbf{M}_{\text{p}.,\beta,i} \cdot \mathbf{M}_{\text{r}.,\alpha,i} \cdot \vec{e}$$
$$\vec{e} = (1,0,0)^{T}$$

Order of multiplication defines interpretation of angles.

$$ec{n}_{i} = \mathbf{M}_{ ext{yaw},\Gamma} \cdot \mathbf{M}_{ ext{pitch},\mathcal{B}} \cdot \mathbf{M}_{ ext{roll},\mathcal{A}} \cdot \mathbf{M} \left(\phi + i \cdot rac{\pi}{4}
ight) \cdot \mathbf{M}_{arphi,i} \cdot \mathbf{M}_{ ext{y}.,\gamma,i} \cdot \mathbf{M}_{ ext{p}.,\beta,i} \cdot \mathbf{M}_{ ext{r.},\alpha,i} \cdot ec{e}$$

Order is chosen such that

$$\mathsf{M}_{\mathrm{roll},\mathcal{A}}\cdot\mathsf{M}\left(\phi+i\cdotrac{\pi}{4}
ight)\cdot\mathsf{M}_{arphi,i}$$

can be combined to one rotation with angle $\phi + \mathbf{A} + \varphi_i + i \cdot \frac{\pi}{4}$.

Order of multiplication defines interpretation of angles.

$$ec{n}_{i} = \mathbf{M}_{ ext{yaw},\Gamma} \cdot \mathbf{M}_{ ext{pitch},\mathcal{B}} \cdot \mathbf{M}_{ ext{roll},\mathcal{A}} \cdot \mathbf{M} \left(\phi + i \cdot rac{\pi}{4}
ight) \cdot \mathbf{M}_{arphi,i} \cdot \mathbf{M}_{ ext{y}.,\gamma,i} \cdot \mathbf{M}_{ ext{p}.,\beta,i} \cdot \mathbf{M}_{ ext{r.},\alpha,i} \cdot ec{e}$$

Order is chosen such that

$$\mathsf{M}_{\mathrm{roll},\mathcal{A}}\cdot\mathsf{M}\left(\phi+i\cdotrac{\pi}{4}
ight)\cdot\mathsf{M}_{arphi,i}$$

can be combined to one rotation with angle $\phi + \mathbf{A} + \varphi_i + i \cdot \frac{\pi}{4}$.

Further simplification: Shift angle of measurements by $-i \cdot \frac{\pi}{4}$

Order of multiplication defines interpretation of angles.

$$\vec{n}_{i} = \mathbf{M}_{\text{yaw},\Gamma} \cdot \mathbf{M}_{\text{pitch},B} \cdot \mathbf{M}_{\text{roll},\mathcal{A}} \cdot \mathbf{M}\left(\phi\right) \cdot \mathbf{M}_{\varphi,i} \cdot \mathbf{M}_{\text{y}.,\gamma,i} \cdot \mathbf{M}_{\text{p}.,\beta,i} \cdot \mathbf{M}_{\text{r}.,\alpha,i} \cdot \vec{e}$$

Order is chosen such that

$$\mathsf{M}_{\mathrm{roll},\mathcal{A}} \cdot \mathsf{M}\left(\phi
ight) \cdot \mathsf{M}_{arphi,i}$$

can be combined to one rotation with angle $\phi + \mathbf{A} + \varphi_i$.

Further simplification: Shift angle of measurements by $-i \cdot \frac{\pi}{4}$

Measurement

Example of one measurement in the dipole

Slide 10

Measurement

Example of one measurement in the dipole

Slide 10

Member of the Helmholtz-Association

$$U_i(\phi) = \frac{1}{u_i} \vec{B}(\vec{x}_i(\phi)) \cdot \vec{n}_i(\phi)$$

description of \vec{B} :

perfect dipole:
$$\vec{B}_1 = (0, B, 0)^{\mathrm{T}}$$

perfect quadrupole: $\vec{B}_2 = g \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \vec{x}(\phi)$
perfect sextupole: $\vec{B}_3 = m \cdot (2x_1(\phi), x_1^2(\phi) + x_2^2(\phi), 0)^{\mathrm{T}}$
more realistic dipole: $\vec{B} = \vec{B}_1 + \vec{B}_3$

...

$$U_i(\phi) = rac{1}{u_i} ec{B}(ec{x}_i(\phi)) \cdot ec{n}_i(\phi)$$

Position of probe i:

$$\vec{x}_{i}(\phi) = \mathbf{M}_{\text{yaw},\Gamma} \cdot \mathbf{M}_{\text{pitch},B} \cdot \mathbf{M} \left(\mathbf{A} + \phi + \varphi_{i} \right) \cdot \begin{pmatrix} \mathbf{R} + \mathbf{r}_{i} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} + \begin{pmatrix} x_{0} \\ y_{0} \\ z_{0} \end{pmatrix}$$

$$U_i(\phi) = \frac{1}{u_i} \vec{B}(\vec{x}_i(\phi)) \cdot \vec{n}_i(\phi)$$

This is now to be expressed in Fourier coefficients:

$$U_i(\phi) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\phi) + b_k \sin(k\phi)$$

$$U_i(\phi) = rac{1}{u_i} \vec{B}(\vec{x}_i(\phi)) \cdot \vec{n}_i(\phi)$$

This is now to be expressed in Fourier coefficients:

$$U_i(\phi) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\phi) + b_k \sin(k\phi)$$

Simplifying assumption: all imperfections are of same order of magnitude $\boldsymbol{\xi}$

 \rightarrow use Taylor expansion up to order $\mathcal{O}(\xi^n)$

Fourier Coefficients

Radial probes, first order $\mathcal{O}(\xi)$

(perfect) Dipole:

Quadrupole:

$$a_{0,D,i} = 0$$

$$a_{1,D,i} = (\mathbf{A} + \varphi_i + \alpha_i) \cdot \frac{B}{u_i}$$

$$a_{1,Q,i} = \frac{g}{u_i} (\mathbf{y}_0 + (\mathbf{A}' + \varphi_i + \alpha_i) \cdot \mathbf{x}_0)$$

$$b_{1,D,i} = \mathbf{1} \cdot \frac{B}{u_i}$$

$$a_{2,Q,i} = \frac{g}{u_i} (-(\mathbf{A}' + \varphi_i + \alpha_i) \cdot \mathbf{y}_0 + \mathbf{x}_0)$$

$$a_{2,Q,i} = \frac{g}{u_i} (\mathbf{R} + \mathbf{r}_i) \cdot (\mathbf{2}\mathbf{A}' + 2\varphi_i + \alpha_i)$$

$$b_{2,Q,i} = \frac{g}{u_i} (\mathbf{R} + \mathbf{r}_i)$$

remaining task

Combine measured Fourier coefficients to estimate angles.

Caveat Mismatch of "outer" roll angle A

Caveat Mismatch of "outer" roll angle A

Caveat Mismatch of "outer" roll angle A

6th June 2017

Solution Use field to find orientation

Fourier coefficients

Dipole: $a_{1,D,i} = (\mathbf{A} + \varphi_i + \alpha_i) \cdot \frac{B}{u_i}$ Quadrupole: $a_{1,Q,i} = \frac{g}{u_i} (\mathbf{y}_0 + (\mathbf{A}' + \varphi_i + \alpha_i) \cdot \mathbf{x}_0)$

Reminder: Rotation around longitudinal axis $\propto A + \varphi_i + \phi$ \Rightarrow Mismatch of A can be "absorbed" in initial ϕ

Shift angle of measurements, such that in Dipole:

Jan Henry Hetzel

Problem solved I

Mismatch of "outer" roll angle A in dipole

Solution Use field to find orientation

Fourier coefficients

Dipole:

$$a_{1,D,i} = (\mathbf{A} + \varphi_i + \alpha_i) \cdot \frac{B}{u_i}$$

Quadrupole:
 $a_{1,Q,i} = \frac{g}{u_i} (\mathbf{y}_0 + (\mathbf{A}' + \varphi_i + \alpha_i) \cdot \mathbf{x}_0)$

Wanted: A = A'already aligned: $a_{1,D,0} = 0$ Consequently: $a_{1,Q,0} \stackrel{!}{=} \frac{g}{u_i} y_0$ or

 $a_{1,Q,0}(x_0) = \text{const.}$

Multiple Measurements at Different Horizontal Positions

choose initial ϕ such, that $a_{1,Q,0} = \text{const.}$ Boundary condition:

 $\frac{\pmb{a}_{\mathbf{2},\mathbf{Q},\mathbf{0}}}{\pmb{b}_{\mathbf{2},\mathbf{Q},\mathbf{0}}}=\pmb{2}\pmb{A}'+\alpha_{\mathbf{0}}$

same for all measurements.

Multiple Measurements at Different Horizontal Positions

Example

Desired initial ϕ can be found by

$$\phi = -\frac{\frac{\partial a_{1,Q,0}}{\partial x_0}(x_0)}{\frac{\partial b_{1,Q,0}}{\partial x_0}(x_0)} = -(\mathbf{A}' + \alpha_0)$$

Problem Solved II?

Mismatch of "outer" roll angle A in dipole and quadrupole

Problem Solved II?

Main source of systematic errors

- displacement has to be carefully matched to horizontal axis
- rely on just a few measurements
- higher order multipoles especially in the outer regions present

Problem Solved II?

Main source of systematic errors

- displacement has to be carefully matched to horizontal axis
- rely on just a few measurements
- higher order multipoles especially in the outer regions present

I Want You!

Better ideas of how to align measurements in dipole and quadrupole welcome.

Combination of Measured Coefficients Radial probes $\mathcal{O}(\xi)$

$$\alpha_i = 2\frac{a_{1,D,i}}{b_{1,Di}} - \frac{a_{2,Q,i}}{b_{2,Q,i}}$$
$$\phi_i = \frac{a_{2,Q,i}}{b_{2,Q,i}} - \frac{a_{1,D,i}}{b_{1,D,i}} + \alpha_0$$
$$R + r_i = \frac{b_{2,Q,i}}{\frac{\partial b_{1,Q,i}}{\partial x_0}}(x_0)$$

Knowledge of proportionality factors u_i not needed at this stage. Redundancy between A and one out of $3 \times 8 \varphi_i \Rightarrow \text{set } \varphi_0 = 0$ for radial probe.

Results Radial probes

6th June 2017

Systematic Uncertainties

- During measurement: "Flip and repeat"
- $\xi_{max} \approx 0.02 \text{ rad} \Rightarrow \mathcal{O}(\xi^2) \approx 5 \cdot 10^{-4} \text{ rad}$
- sextupole contribution, *O*(ξ)):

$$a_1 \cdot u = m \cdot \left(2xy + (A + \varphi + \alpha)(x^2 + y^2) + (R + r)^2 A \right)$$

$$b_3 \cdot u = m \cdot (R+r)^2$$

even for maximum measured b_3 correction to $a_1 = O(x^2)$

Conclusion & Outlook

- successfully determined positions and roll angles of angular probes to first order
- determine proportionality factors u_i by comparison with NMR measurements
- determine remaining angles by using second order
- determine remaining angles by additional measurements in solenoid

Acknowledgement

We would like to thank the whole TE-MSC-MM group of CERN and especially Marco Buzio, for enabling us to work at the CERN magnets and sharing their ideas.

Jan Henry Hetzel