At-wavelength metrology with grating based shearing interferometer at DLS

<u>Hongchang Wang¹</u>, Kawal Sawhney¹, Sébastien Berujon^{1, 2}, Eric Ziegler², Christian David³, Timm Weitkamp⁴

> ¹Diamond Light Source, ²European Synchrotron Radiation Facility, ³ Paul Scherrer Institut ⁴Synchrotron Soleil

Outline

- Introduction
- Rotating shearing interferometer
- Characterisation of Parabolic refractive lens
- Characterisation of X-ray mirror
- Summary and Outlook

At-wavelength Metrology

Hartmann sensor

BLow photon efficiency
Restricted to near field
Two dimensional information

J. Hartmann, Z. Instrumentenkd. 20 (1900) 47–58

Grating shearing interferometer

High photon efficiency
High sensitivity
Gives information about coherence function Two modes of operation:
(1) phase stepping (2) More Fringe analysis

T. Weitkamp, et al, Opt. Express, 13, 6296 (2005) T. Weitkamp, et al., Appl. Phys. Lett. 86, 054101 (2005) T. Weitkamp, et al., SPIE. 5533, 140 (2004)

Grating setup at DLS B16

Rotating shearing interferometer

 α →G2 misalign angle k→ Wavefront Radius of Curvature

Experiment at DLS B16: Hongchang Wang and Kawal Sawhney

Radius of Curvature for Flat field Wavefront

do G1 Pitch	Order	L/m	α /rad	k	R/m (Γ=1)
$d_0 = 4 \mu m?$	3rd	0.0643	-0.0351	0.9981	33.96
	5th	0.1085	-0.0352	0.9971	36.67
d2 G2 Pitch	7th	0.1585	-0.0352	0.9956	36.03
$d_2 = 2 \mu m?$	19th	0.4175	-0.0354	0.9889	37.20

Characterization of Parabolic refractive lens

Phase stepping

Without Flat Field correction Flat Field

With Flat Field correction

Characterisation of Parabolic refractive lens

Phase Gradient distribution

Relative thickness distribution

Plane mirror characterization

Data Processing

Phase Stepping

Plane mirror characterisation

Phase Stepping vs. Moiré Fringe Analysis

	Phase Stepping	Moiré Fringe Analysis	
No. of Image	>3 [10 in our test]	1	
FFT	Intensity vs. G2 position	Fringe position	
Grating Divergence Match	Desirable	Not required	
Resolution	One pixel	One fringe	
Advantage	2D high resolution	Fast	
Disadvantage	Time-consuming	One dimension	

Summary and Outlook

- Shearing interferometer has been developed at DLS B16
 Parabolic lens has been studied with phase stepping method
 Plane mirror was measured with shearing interferometer
 At-wavelength metrology in near future (Curved mirrors, Zone Plate, Multilayer Laue Lens (MLL)...)
- > High resolution tests with 2D grating?

Acknowledgements

Thanks to...

- Diamond Light Source
 - Optics & Metrology Group (Simon Alcock, Lucia Alianelli, John Sutter)
 - B16 (Slava Kachkanov, Igor Dolbnya, Stewart Scott, Andrew Malandain)
- Paul Scherrer Institut, Switzerland (Christian David)

Thanks for your attention

