

Challenges of Optics for High Repetition Rate XFEL Source

Liubov Samoylova, European XFEL GmbH

ACTOP11, DIAMOND, April 5th, 2011

- European XFEL photon transport system overview
- X-ray optics for XFEL: requirements and challenges
- Grazing incidence mirrors: wavefront simulations and first measurements
- Summary and outlook

European XFEL @DESY

www.xfel.eu www.desy.de

- 10-15 experiments (start-up 6)
- 27,000 pulses/sec (2-100 fs long)
- 10¹⁰ 3.7×10¹⁴ phs/pulse @ 0.5Å 49 Å
- flux: 1.7×10¹⁶ phts/(0.1% sec) @ 12.3 keV
- 10⁹€(start-up 850 M€)

Timeline:

June 5, 2007: Official funding of project by Germany and 12 international partners

Nov. 2008: Award of construction contracts

Oct 2009: Foundation of XFEL Company

mid 2013: All buildings finished, start installation of components

mid 2015: first beam

December 2015: User operation, SASE 1

XFEL pulse structure

European XFEL

European XFEL Photon Beam Systems

Experimental stations:

HED: High Energy Density matter experiments
MID: Material Imaging and Dynamics
FXE: Femtosecond X-ray Experiments
SPB: Single Particle, clusters & Biomolecules

SQS: Small Quantum Systems SCS: Spectroscopy & Coherent Scattering

Challenges of Optics for High Repetition Rate XFEL Source

Photon transport systems

European XFEL

Requirements to Photon Transport System

- Maximal possible transmission single pulses / full pulse train
- Minimal possible distortion of wavefronts
- Extensive/ redundant monitoring of the system status motor encoders, temperatures, bending radii of mirrors ...
- Safe operation single pulse damage, heat load damage during the pulse trains
- Fast change in between experiments
- Reliable & fast change of photon energy tuning of mirror system
- Stability of beam positions *cp jitter of SASE*
- Radiation protection

Challenges of Optics for High Repetition Rate XFEL Source

Mirror Optics Optimization

- Diffraction effects on mirror apertures can be reduced with increasing θ_{inc}
- Wave front distortions
 due to surface height errors
 ~2 h_{PV} sin(θ_{inc}) grow proportional to θ_{inc}⁻
- Ultra smooth mirrors, <2-3 nm PV, length 800 mm
- Single pulse damage
- Heat load

Mirror Optics Optimization

Is 4 σ clear aperture sufficient?

Is it possible to minimize WF distortions and provide maximum beamline transmission for whole operation ranges?

Wave front simulation

- Fourier optics approach to propagation of XFEL pulses through the X-ray grazing incidence optics
- Alternatives (used mostly for cross-checking):
 - stationary phase method
 - Fresnel Kirchhoff numerical integration
- PHASE software: HZB,
 J. Bahrdt
- SRW
 O. Chubar, P. Elleaume

The diffraction effects become noticeable for footprints of 4σ or less.

SASE1 central station (SPB)

April 5, 2011, Diamond Light Source, Oxford, UK L. Samoylova, European XFEL GmbH

13

April 5, 2011, Diamond Light Source, Oxford, UK L. Samoylova, European XFEL GmbH

April 5, 2011, Diamond Light Source, Oxford, UK L. Samoylova, European XFEL GmbH

Height difference in the center of the mirror

$$h[nm] = \frac{l_{mirr}^2[mm]}{8\,R[km]}$$

10% size variation of focused beam (20μm) -3 nm stability of distribution mirror curvature

10% size variation of a round beam @ 12 keV ~30 nm of offset mirror

Comparison with experiment

Wave front analysis at LCLS XPP station, 9 keV

European XFEL Challenges of Optics for High Repetition Rate XFEL Source

Measuring Wavefronts: Grating X-ray Interferometry

Differential phase contrast imaging!

sketch courtesy of C.David, PSI

First results from X-ray wavefront measurements at LCLS

Project leader C. David

April 5, 2011, Diamond Light Source, Oxford, UK L. Samoylova, European XFEL GmbH

European

Wave front analysis at LCLS XPP, 9 keV Intensity distribution after two HOMs mirrors

XPP wavefront measurements with 1D grating interferometer

phase stepping mode (~100 shots per step)

Calculations:

Gaussian beam with far field divergence 3.5 µrad FWHM

2D grating interferometer data processing by Simon Rutishauser surface profiles by LLNL/Jacek Krzywinski

April 5, 2011, Diamond Light Source, Oxford, UK L. Samoylova, European XFEL GmbH

Summary

- Photon transport systems can transmit single XFEL pulses and pulse trains with reasonable wavefronts distortions by beamline optics
- Design relies on novel optical components. In particular, 800 mm long mirrors, with profile errors < 2nm PV, ~20 nm slope errors and with bending control precision up to 10 nm and better.
- First experience with grazing incidence X-ray optics at LCLS:
 - coherent X-ray laser radiation brings problems,
 - good news: we can predict and analyze them in advance

... and Outlook

- precise and mechanically stable (~1 nm)
 active optics
 F. Siewert T. Noll HZB
- in-situ metrology and control are crucial!
 In-situ X-ray metrology optical and X-ray grating interferometry, precision up to 10nm/10nrad
- user-friendly wave optics software for design, J.Bahrdt HZB
 commissioning and optimisation of beamlines
 O.Chubar, BNL
 and instruments

European XFEL

Acknowledgments:

Helmholtz-Zentrum Berlin

Frank Siewert, Johannes Bahrdt

PSI

Christian David, Simon Ruthhauser

SLAC

Jacek Krzywinski

BNL

Oleg Chubar

MPY, DESY

Mikhail Yurkov, Evgeny Schneidmiller

European XFEL:

Harald Sinn

Jerome Gaudin, Antje Trapp, Fan Yang, Germano Galasso, Nicole Kohlstrunk, Martin Dommach, Idoia Freijo, Shafagh Dastjani Farahani

Thomas Tschentscher

