<u>Study on the discrepancy between the prediction from magnetic</u> <u>measurement and the result from beam based</u> <u>measurement/spectral measurement for NSLS-II IDs</u>

Toshi Tanabe

Energy and Photon Sciences Directorate,

Brookhaven National Laboratory, Upton NY 11973

IMMW20 June 4-9 at Diamond LS

<u>Outline</u>

- NSLS-II Storage Ring and Science Programs
- NSLS-II Insertion Devices
 - -List of IDs, Installation History, etc.
 - -NSLS-II ID-Magnetic Measurement Facility (ID-MMF)
 - -Spectrum based ID alignment
 - -1st Integral comparison between mag. meas. and beam based one
 - -Multipole Measurement / Skew quadrupole issue
- Summary

Acknowledgement:							
ID group members:	<u>C. Kitegi (now at Soleil),</u> D. Hidas, <u>M. Musardo</u> , J. Rank, <u>D.A. Harder</u> , P.						
	Cappadoro, H. Fernandes, T. Corwin, C. Rhein and B. Licciardi						
Part-time members:	Y. Hidaka, O. Chubar and C. Spataro						
Accelerator Physics:	A. Blednykh and Y. Li						
Vacuum Group:	Charles Hetzel and Charles De La Parra						
Various Beamline Group Members							

Evolution of LS

Science

Emittance of World's SR souces

NATIONAL LABORATORY Light Source II

NSLS-II

A 3rd Generation Synchrotron Light Source Min Beam size: $\sigma_x = 28 \ \mu$ m; $\sigma_y = 2.6 \ \mu$ m; bunch length = ~ 4.5 mm

 $\varepsilon_x = 0.9 \text{ nm-rad}$ (w. 6 DWs) $\varepsilon_y = 8 \text{ pm-rad}$ Accelerators:

200-MeV Linac 3-GeV Booster, 1-2 Hz, C = 158.4 m

3-GeV SR: I = 500 mA, C = 792 m, 30 Achromatic DBA cells

Experimental Facilities:

19 ID+BM Beamlines as of March 2017 Capable of hosting 60+ beam lines Feb 2009 Start of Construction Mar 2012 Linac Beam Commissioning Dec 2013 Booster Beam Commissioning **April 2014 SR Beam Commissioning Started** Jan 2015 Stable Beam for Users July 2015 Designated as DOE's User Facility Oct 2015 Top-up operation started

National Synchrotron

NSLS-II Storage Ring Current Status

- Max current of 400mA with two SRFs w/o IDs closed. Normal operation at 300mA with top-off.
- The third cavity is planned to be installed to start 500mA operation in 2019.
- ε_v < 8pm with all IDs closed has been achieved. (only two out of 19 beam lines prefer low emittance mode)
- Beam stability of ~1% in horizontal and <10% in vertical beam size with FOFB on.
- Eight IVUs, Five EPUs, Six DWs, Five 3PWs One In-Air Device (refurbished ESRF) are in place.
- Refurbished EPU60 from SRC is to be installed in August17 shutdown

Tandem FPUs: 1.4m-EPU57 & 2.7m-OEPU105

Science

Canted 2.8m In-Vacuum Undulator (IVU23)

Superconducting RF

NSLS-II Beamline Portfolio

Science

Soft X-Ray Scattering & Spectroscopy

23-ID-1: Coherent Soft X-ray Scat (2015) 23-ID-2: Coherent Soft X-ray Spectr & Pol (2015/2016) 21-ID: Photoemission-Microscopy Facility (2017) 2-ID: Soft Inelastic X-ray Scattering (2017) 22-BM: Magneto, Ellipso, High Pressure IR (2018)

Complex Scattering

10-ID: Inelastic X-ray Scattering (2015) 11-ID: Coherent Hard X-ray Scattering (2015) 11-BM: Complex Materials Scattering (2016) 12-ID: Soft Matter Interfaces (2017)

Diffraction & In Situ Scattering

28-ID-1: X-ray Powder Diffraction (2015) 28-ID-2: X-ray Powder Diffraction (2017) 4-ID: In-Situ & Resonant X-Ray Studies (2017) 27-ID: High Energy X-ray Diffraction (2020) 25-ID: Materials in Radiation Environments (2020?)

Hard X-Ray Spectroscopy

8-ID: Inner Shell Spectroscopy (2017) 7-BM: Quick X-ray Absorption and Scattering (2016) 8-BM: Tender X-ray Absorption Spectroscopy (2017) 7-ID-1: Spectroscopy Soft and Tender (2017) 7-ID-2: Spectroscopy Soft and Tender (2017) 6-BM: Beamline for Mater. Measurements (2017)

Imaging & Microscopy

3-ID: Hard X-ray Nanoprobe (2015) 5-ID: Sub-micron Res X-ray Spec (2015) 4-BM: X-ray Fluorescence Microscopy (2017) 18-ID: Full-field X-ray Imaging (2018)

Structural Biology

17-ID-1: Frontier Macromolecular Cryst (2016) 17-ID-2: Flexible Access Macromolecular Cryst (2016) 16-ID: X-ray Scattering for Biology (2016) 17-BM: X-ray Footprinting (2016) 19-ID: Microdiffraction Beamline (2017)

NSLS-II Insertion Devices Damping Wiggler (DW) APPLE-II Type Elliptically Polarizing Undulator (EPU) In-Vacuum Undulator (IVU)

• Three Pole Wiggler (3PW) – Sometimes called Wavelength Shifter

NSLS-II Insertion Devices

Five Apple-II EPUs (Four different types)

by Kyma SRL

Six 3.4-m hybrid 1.8T PM damping wigglers

Nine In-Vacuum Undulators (IVUs)

by Hitachi Metal America (Neomax)

Refurbished in-house design IVU18

National Synchrotron

BROOKHMVEN

NATIONAL LABORATORY Light Source II

Three Pole Wiggler (3PW)

Hybrid 3 Pole Vertical Field

3PW+BM Radiation Intensity Distributions

Observation Distance: 30 m (from 3PW Central Pole)

NSLS-II Insertion Device List (Project IDs)

Beam Line	Туре	Design	Beam port	Location	Length [m]	Period [mm]	Peak Field [T]	K _{max}	Canting Angle [mrad]	Vac Aper [mm]	Fund. [eV]	Total Power [kW]
							0.57 (heli)	2.6 (heli)			230 (heli)	7.3 (heli)
CSX1 /CSX2 EPU4		PPM	Low-β _x	23-ID	4 (2×2)	49	0.94 (Lin)	4.3 (Lin)	0.16	8.0	180 (Lin)	9.9 (Lin)
	EPU49						0.72 (vlin)	3.2 (vlin)			285 (vlin)	5.5 (vlin)
							0.41 (45d)	1.8 (45d)			400 (45d)	1.7 (45d)
IXS	IVU22	Hybrid	High- β_x	10-ID	6 (1×3) center	22	1.52	1.52	0	7.2	1802	4.7x2
HXN	IVU20	Hybrid	Low-β _x	3-ID	3	20	1.03	1.83	0	5.0	1620	8.0
СНХ	IVU20	Hybrid	Low- β_x	11-ID	3	20	1.03	1.83	0	5.0	1620	8.0
SRX /(XFN)	IVU21	Hybrid	Low-β _x	5-ID	1.5 downstream	21	0.90	1.79	2.0	6.2	1570	3.6
XPD /PDF	DW100	Hybrid	High- β_x	28-ID	6.8 (2×3.4)	100	1.8	~16.5		11.5		64.5

 Total 7 Insertion Devices (IDs) installed and commissioned as part of NSLS-II Project

NSLS-II Insertion Device List (NEXT, ABBIX, Partner)

Beam Line	Project	Туре	Design	Beamport	Location	Length [m]	Period [mm]	Peak Field [T]	K _{max}	Canting Angle [mrad]	Vac Aper [mm]	Total Power [kW]
ESM	NEXT	EPU105/ EPU57	PPM	Low-β _x	21-ID	2.7/1.4	105/49	0.74/0.57 (heli) 0.90 (vlin) 1.14/0.83 (Lin)	7.23/3.55 (heli) 7.23/3.06(vlin) 11.2/4.4 (Lin)	2.0		4.22/1.2 (heli) 4.22/0.86 (vlin) 10.1/2.0 (Lin)
SIX	NEXT	EPU57	PPM	High- β_x	2-ID	7.0 (2×3.5)	57	0.57 (heli) 0.83 (Lin)	3.55 (heli) 4.41 (Lin)	0		4.4 (heli) x2 6.8 (Lin) x2
ISR	NEXT	IVU23	Hybrid	High-β _x	4-ID	2.8	23	0.95	2.05	2.0	6.0	
SMI	NEXT	IVU23	Hybrid	High-βx	12-ID	2.8	23	0.95	2.05	2.0	6.0	
ISS+XFP	NEXT	DW100	Hybrid	High- β_x	18-ID	6.8 (2×3.4)	100		~16.5		11.5	64.5
FXI	NEXT	DW100	Hybrid	High- β_x	8-ID	6.8 (2×3.4)	100		~16.5		11.5	64.5
LIX	ABBIX	IVU23	Hybrid	High- β_x	16-ID	2.8	23	1.02	2.2	0	5.5	
FMX/AMX	ABBIX	IVU21	Hybrid	Low-β _x	17-ID	1.5 x 2	21	0.90	1.79	2.0	6.2	3.6
SST	Partner	U42	Hybrid	Low-β _x	7-ID	1.6	42	0.82	3.27	2.0	8.0	3.2
	Partner	EPU60	PPM	Low-β _x	7-ID	0.89	60	0.73 (heli)	4.1 (heli)		8.0	1.8 (heli)
								1.02 (Lin)	5.7 (Lin)	•		2.7 (Lin)
NYX	Partner	IVU18	Hybrid	Low-β _x	19-ID	1.0	18	0.95	1.55	0	5.4	2.5
HEX	Partner	SCW80	EM	Low-β _x	27-ID?	1.0	55	4.2	21.6	0	10	49.7

• 11 additional IDs installed so far (9 commissioned) as part of 3 different projects

- 1 more ID (SST) soon to be installed
- 2 SCWs (1.2m, 80mm period, 4.5T) planned in coming years

NSLS-II ID-Mag. Meas. Facility Coil Measurement System Hall probe bench In Vacuum Magnetic Measurement System Our Cross Calibration Results Multipole Measurement for Small Gap ID

ID-MMF (Coil Measurement System, Hall probe bench)

Integrated Field Measurement System by ADC USA Inc

- Reference surface flatness ±5 µm.
- Weight of each granite support: 1580 kg

3D Hall probe bench MMB-6500 by Kugler, GmbH - SENIS 3D Hall Probe (Type P for H3A)

- Flatness deviation $< \pm 3 \,\mu m$
- Longitudinal Positioning accuracy $< \pm 1 \mu m$.
- 9 Motion Controlled Axes.

Details: M. Musardo (IMMW19)

In-Vacuum Undualtor with a "Side Window" at ID-MMF

Magnetic Measurement Revealed Pole Damage in an IVU

BNL's mag measurement revealed that there was a big error in the first peak field value

In-Vacuum Magnetic Measurement System (IVMMS) Dec 2012

PrFeB Undulator:λu=17mm, 47CR

LN2 Cold Measurement Tes

Issues:Thermal load for cryogenic meas. Vacuum compatible lubricant

Fixed Gap Calibration-Array for Cross-calibration

(1) BNL vs Danfysik Hall Probe Scan @ X=0 mm NdFeB - Fixed gap = 5.7 mm, $L = 50 \text{ cm}, \lambda = 15 \text{ mm}$ $\Delta B_{max} = 77 G$ Residual [T 2.5 x10 sdev: 16.504 G $\partial B_{max} = 1.1 \%$ -2.5 $\Delta B_{min} = 58 G$ By-Taper is: -85.191 G/m B max: 0.68379 T B min: 0.67583 T ∂B_{min} =0.8 % By-Peaks [T] Δ Taper = 40 0.682 G/m 0.680 ∆B=67.2 G 0.678 ∂B= 0.98 % 0.676-30 $\Delta \sigma = 0.2$ ° 10 2040 50 0 **#Poles** Field Integrals Measurement by 3 Labs

Hall Probe Measurement Comparison for SIX-EPU57

Field Integral Comparison for SIX-EPU57

(2) BNL vs Kyma

A Caveat for RMS Phase Error

•Radiation Phase
$$\phi = k_s z - \omega_s t$$
 then $\frac{d\phi}{dz} = k_s - \omega_s \frac{1}{\frac{dz}{dt}} = k_s - \frac{\omega_s}{c} \frac{1}{\frac{v_{ll}}{c}} = k_s \left(1 - \frac{1}{\beta_{ll}}\right) \beta_{ll} = \sqrt{\beta^2 - \beta_{\perp}^2}$
 $(\beta_{ll})^{-1} = \left(\beta^2 - \beta_{\perp}^2\right)^{-\frac{1}{2}} = \left(1 - \frac{1}{\gamma^2} - \beta_{\perp}^2\right)^{-\frac{1}{2}} \approx 1 + \frac{1}{2\gamma^2} + \frac{\beta_{\perp}^2}{2}$ Therefore, the phase advance over the distance S is RMS Phase Errors with N periods
 $\phi(S) = \frac{k_s}{2} \left[\frac{S}{\gamma^2} + \int_0^S \left|\beta_{\perp}\right|^2 dS\right]$

→ However, the below formula is applicable only when the errors are RANDOMLY distributed.

Intensity(deg, n)
$$\approx I_{ideal} e^{-\left(\frac{n\pi \cdot \text{deg}}{180}\right)^2}$$

Calculated spectrum shows very little degradation

ID Integrated Mutiplole Estimates

 Note: Multipole expansion is a solution of Laplace equation (i.e. without source). Therefore measurement in horizontal dimension should be equal to the gap value. <u>All the vendors were making this mistake.</u>

 Beam Based Measurement on 2nd order kicks in APPLE-II EPUs
 Beam Based Field Integral Measurement
 Spectral Based ID Alignment

Measurements of 2nd order kick in LV Mode in Apple-II EPU57

Closed w/ CS Closed w/o CS Open Measured v_x 0.20458 0.19216 0.20307 Expected v_r N/A 0.19156 0.20422 Measured v_{y} 0.25397 0.25804 0.25610 Expected v_{v} N/A 0.25802 0.25567

18 current strips per device

second order kicks (Elleaume, EPAC 1992):

$$\theta_{x/y} = -\frac{1}{(B\rho)^2} \int \left\{ \int B_x dz' \cdot \int \frac{\partial B_x}{\partial x/y} dz' + \int B_y dz' \cdot \int \frac{\partial B_y}{\partial x/y} dz' \right\} dz$$

 $x \, [mm]$

Field Integrals: Beam-based vs. Flip Coil Meas.

			Gap	Coil ΔI_x [G.cm]	Coil ΔI_v	e-beam ΔI_x	e-beam ΔI_v	RMS Δx	RMS Δy	
Device	Location	Date	[mm]		[G.cm]	[G.cm]	[G.cm]	[µm]	[µm]	***7 5mm dan
IVU20	C3	2/25/15	6.7	-15.6	3.4	-11.1	-3.4	1.152	0.501	7.5mm gap
IVU20	C11	2/25/15	6.7	-100.8	11.6	18.0	32.5	1.187	0.593	
IVU21	C5	11/15/14	6.2	-71.2	85.8	-104.454	102.777	1.417	1.084	**6.8mm gap
		2/25/15 **	6.5	-90.9*	72.5*	-81.194	88.924	1.199	2.787	01
IVU22	C10 (LS)	11/21/14	6	214	17.7	-24.237	-15.945	2.419	1.189	
		2/25/15	7.2	-109***	41.1***	-63.984	-18.226	2.534	3.014	*Realigned after
DW	C8U	12/20/14	15	-21.3	-55.4	-105.159	-99.38	8.818	4.485	vear-end shutdown
		2/25/15	15			-62.961	-79.578	5.546	4.252	in 2014
	C8D	1/23/15	15	152	159	59.702	215.524	6.066	6.634	
		2/25/15	15			42.042	199.967	10.021	5.955	
	C18U	12/17/14	15	-22.8	13.7	-144.666	-76.481	5.795	6.456	
		2/25/15	15			-96.179	-67.754	4.659	3.454	
	C18D	12/20/14	15	3.95	-13.2	-187.691	95.166	5.464	5.249	
		2/25/15	15			-213.981	79.656	5.950	9.544	
	C28U	12/8/14	15	-95.9	-24.267	141	-57.057	5.106	6.544	
		2/25/15**	15			-67.9	-53.881	4.564	3.326	
	C28D	12/8/14	15	-30.9	-237	-290	178.495	5.134	17.54	
		2/25/15 **	15			-206	160.369	7.758	6.311	

- Beam-based fitting is worse (RMS $\Delta x \& \Delta y$) for DWs than for IVUs
 - -Stronger focusing effect of wigglers, sensitive to vertical orbit centering
 - –Large horizontal wiggling motion => path lengthening
- Many show large discrepancies
 - Potential causes: Earth field variation, nearby ferromagnetic structures, stray B-field, misalignment during installation
 - -Found vertical ID corrector strengths for DWs to be insufficient

<u>Examples of Spectrum Based Alignment of IVUs</u> <u>at Hard X-ray Beamlines of NSLS-II</u>

On-Axis UR Spectra Before and After Spectrum Based Alignment

IVU21 - 1.5 m at SRX BL IVU23 - 2.8 m at SMI BL IVU23 - 2.8 m at LiX BL (harm. #5 at ~6.8 mm gap, ~8.0 keV) (harm. #7 at ~6.5 mm gap, ~8.07 keV)(harm. #9 at ~6.2 mm gap, ~9.24 keV

Spectral performance of ~Half of NSLS-II IVUs was restored / improved thanks to the Spectrum-Based Alignment procedure. The "underperforming" IVUs are identified by comparison of their measured spectra with SRW simulations (making use of magnetic measurements data).

O.Chubar

Gap Center Search by E-Beam

- <u>https://logbook.nsls2.bnl.gov/Operations/index.html#38760_1</u>
- yhidaka, 3/2/16, 8:57 am Show details
- Elevation scan indicates that the optimal elevation for ID12-2 is +560 um. Note that the beam orbit was vertically off by +100 um. So, the ID needs to be raised by 460 um mechanically to align around BBA.

HXN (3-m IVU) with Beam Steering

Effect of Vertical Translations/Angle (Calibration Array)

On-Axis: lx=5.8 G.cm, ly=21G.cm Ph.Err=1.6°

Y=+0.2mm: lx=14 G.cm, ly=27G.cm Ph.Err=1.6 °

Y=-0.2mm: lx=7.1 G.cm, ly=28G.cm Ph.Err=1.6 °

Y[Z=0]=0 Vertical Angle 0.2mrad: Ix=11 G.cm, Iy=24G.cm Ph.Err=3.2°

Old Beam Data before Spectral Optimization New Beam Data after Spectral Optimization SRX SRX-Ix-Beam SRX-Ix-Beam SRX-lv-Beam 100 SRX-ly-Beam SRX-Ix-Coil Fist Integral (G.cm) SRX-Ix-Coil 200 Fist Integral (G.cm) SRX-ly-Coil SRX-ly-Coil 50 100 0 0 -50 -100 -100 7 9 10 8 7 8 9 10 Gap (mm) Gap (mm) LIX 20 0 -20 0 -40 -20 LIX-Ix-beam LIX-Ix-beam -60 LIX-ly-beam LIX-ly-beam LIX-Ix-Coil LIXC-Ix-Coil -40 LIX-ly-Coil LIXC-ly-Coil -80 15 20 25 30 35 10 40 10 15 20 25 Gap (mm) Gap (mm)

SRX (1.5-m IVU) & LIX (2.8-m IVU) Mag. Meas. vs Beam

SMI (2.8-m IVU) Mag. Meas. Vs Beam

Old Beam Data Before Spectral Optimization (beam with +100 mm vertical offset)

New Beam Data After Spectral Optimization

SIX (3.5m EPU) Mag. Meas. Vs Beam

Integrated Field Integral variations with beam are larger than those by magnetic field measurement

 \rightarrow Spectral optimization may be still needed

33

In-Situ Direct Gap Measurement Used in IVU18 (2005)

(Was not used for NSLS-II IVUs Due to their Larger Vacuum Chamber Size) Measurement accuracy of $\pm 2\mu m$ and repeatability of $\pm 0.15\mu m$.

ID Coupling Correction

- SQ error estimates by DTBLOC (Driving-Terms-based Linear Optics Calibration) algorithm [Y. Hidaka et al. NAPAC 2016
 - Based on RDTs formalism used by ESRF coupling correction [A. Franchi et al., PRSTAB 14, 034002 (2011)]
 - Also estimates normal guad errors as well as BPM gains/rolls/deformations (very important for coupling!)
 - Very fast (~2 min. data acq. [TbT + Dispersion], ~3 min. data proc. & fitting, for 1 iteration)

$$\begin{split} f_{1001}(s) &\cong \frac{\sum_{w} (\Delta a_{2}L)_{w} \sqrt{\beta_{x}^{w} \beta_{y}^{w}} e^{i(\Delta \phi_{x}^{w,s} \mp \Delta \phi_{y}^{w,s})}}{4\left(1 - e^{2\pi i \left(\nu_{x} \mp \nu_{y}\right)}\right)} \quad \left| f_{x1} \right| = \sqrt{2I_{x} \beta_{x0}} \quad \left| f_{y1} \right| = \sqrt{2I} \\ f_{x2} &= \sqrt{2I_{y} \beta_{x0}} \sqrt{\left(2\Im\{f_{1001}\} + 2\Im\{f_{1010}\}\right)^{2} + \left(2\Re\{f_{1001}\} - 2\Re\{f_{1010}\}\right)^{2}}}{f_{y2}} \\ f_{y2} &= \sqrt{2I_{x} \beta_{y0}} \sqrt{\left(2\Im\{f_{0110}\} + 2\Im\{f_{1010}\}\right)^{2} + \left(2\Re\{f_{0110}\} - 2\Re\{f_{1010}\}\right)^{2}} \\ \end{split}$$

35

- With feedforward turned on under a nominal user operation condition (i.e., high current, moderate emittance):

 - $\Delta \sigma_y$ of 60% (260% in ε_y) => 4% (8%) Beam-current-lifetime-product change of 53% reduced to 11%.
- Table generated at low current (2 mA) (.207, .285) was equally effective at high current (250 mA).

<u>Summary</u>

- Magnetic measurement system at the NSLS-II has been cross-calibrated with other facilities' similar equipment.
- Some devices' characteristics had changed after transportation (may be due to mechanical shocks, extra baking process, variation in earth field?)
- EPU's 2nd order effect (dynamic integral effect) has been successfully compensated with current strips.
- Multipole measurement for small gap ID poses new challenge in terms of accuracy of measurement.
- Discrepancy between magnetic measurement and beam based one was larger with high field wiggler maybe due to:
 - Stronger focusing effect of wigglers, sensitive to vertical orbit centering
 - Large horizontal wiggling motion contributes increased path length.
- Beam-based measurement of horizontal field integral is more sensitive to beam orbit than that of vertical field.
- Beam-based kick measurement assumes straight trajectory inside an ID. However, magnetic measurements of some IDs show that some devices have somewhat curved trajectory in the ID.

More to do:

- o More spectral optimizations for other IDs and repeat the same experiment
- Use long coils to straighten the trajectories in some IDs and repeat the same experiment
- o Identify the sources of extra field in the tunnel

•Back up slides

Dynamic Aperture Considerations

•J.Benstsson 2007 ID review

The impact of Insertion Devices (IDs) is given by

$$\langle H \rangle_{\lambda_{u}} = \frac{p_{\chi}^{2} + p_{y}^{2}}{2(1+\delta)} - \frac{k_{\chi}^{2} x^{2} - k_{y}^{2} y^{2}}{4k_{z}^{2} \rho_{u}^{2}(1+\delta)} - \frac{k_{\chi}^{4} x^{4} + 3(k_{\chi}^{2} - k_{y}^{2})k_{\chi}^{2} x^{2} y^{2} + k_{y}^{4} y^{4}}{12k_{z}^{2} \rho_{u}^{2}(1+\delta)} - \delta + O(p_{\chi,y})^{4}$$
(EQ 1)

which drive beta and phase advance beat, tune shift, nonlinear resonances, and amplitude dependent tune shift. In particular

$$\Delta v_{y} = \frac{\beta_{y} L_{u}}{8\pi \rho_{u}^{2}}, \qquad \mathcal{M} = e^{:h} \mathcal{M}_{\text{linear}}, \qquad \frac{\partial v_{y}}{\partial J_{y}} = \frac{\pi \beta_{y}^{2} L_{u}}{4\lambda_{u}^{2} \rho_{u}^{2}}$$
(EQ 2)

The beta and phase advance beat, and tune shift can be corrected locally.

- Top-up injection: stay-clear and efficiency.
- Touschek life time: momentum aperture, vertical physical apertures, and nonlinear dynamics.
- Impact on emittance: canting and Three-Pole Wigglers (~10% for 15 TPWs).

$$Min < \beta^{2}(s) > --- > \beta_{0} = L/2\sqrt[4]{5} \sim L/3$$

Impact of Radom Multipole Errors in the Long Straight

13 devices were used in the simulation

(J. Bengtsson)

$$T/m = 100G/cm$$

$$T/m^2 = G/cm^2$$

A Typical "Canted" Short Straight

