Industrial Research on Catalysis using XAS at Diamond

Anna B. Kroner¹, Sin-Yuen Chang¹, Miren Agote-Aran^{1,2,3}, Ellie K. Dann^{2,3}, Ines Lezcano-Gonzalez^{2,3}, Peter P. Wells^{1,3,8}, Emma Gibson^{3,4}, Alexandre Goguet⁷, Tugce Eralp Erden⁵, Agnes Raj⁵, Christopher Hardacre^{3,6}, Paul Collier⁵, Andrew M. Beale^{2,3}, Elizabeth J. Shotton¹

¹Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, UK, ²Department of Chemistry, UCL, London, WC1H 0AJ, ³UK Catalysis Hub, Research Complex at Harwell, OX11 0FA, ⁴School of Chemistry, University of Glasgow, G12 8QQ, ⁵Johnson Matthey Technology Centre, Sonning Common, RG4 9NH, ⁶School of Chemistry, The University of Manchester, M13 9PL, ⁷QUB, School of Chemistry and Chemical Engineering, Belfast, BT9 5AG, ⁸University of Southampton, School of Chemistry, SO17 1BJ

A wealth of catalysis research is carried out at Diamond and the techniques available include X-ray absorption spectroscopy (XAS), small-angle X-ray scattering (SAXS), powder diffraction, and X-ray imaging. The requirements for high selectivity and activity of catalysts are among the most crucial demands for a successful commercial application. Therefore, catalyst characterisation provides a unique opportunity for industry to develop new challenging materials for energy, chemistry and environmental technologies. Over the past decades, great efforts have been devoted to developing methods for catalyst characterisation under real operating conditions. Thus, a range of sample environments have been implemented at Diamond to accommodate the combined techniques suitable for operando studies.

Methane upgrade to higher value chemicals

Combined set up for effective catalyst design

Methane Dehydroaromatisation (MDHA) is a non-oxidative reaction that converts CH₄ directly into hydrocarbons, aromatics and hydrogen.

Evolution of PdO/ γ -Al₂O₃ made from two different Pd precursors

The aim of this work is to understand how PdO nanoparticles are I₀ IR formed using a combined set up of XAS/DRIFTS/MS and find the optimal route for designing a palladium oxide based catalyst;

Pd0/ γ -Al₂O₃ was formed using Pd(NO₃)₂ and Pd(NH₃)₄(OH)₂

Pd catalysts can be used in a number of catalytic applications:

Customised Harrick DRIFTS Cell

precursors;

—

—

—

CO and CH_4 oxidation;

Automotive three-way catalysts.

Upgrading bio-oils;

In situ DRIFTS results during calcination Intensity

Intensity

 $Pd(NO_3)_2/\gamma - Al_2O_3$ forms pre-associated molecular assemblies upon impregnation due to bridging interactions of nitrate ligands and an increase in the Pd-Pd scattering contribution The Pd centres from $Pd(NH_3)_4(OH)_2/\gamma - AI_2O_3$ appear to adopt isolated $[Pd(NH_4)_4]^{2+}$ sites upon impregnation, evidenced by the absence of any Pd-Pd distances

Newly developed XAS/DRIFTS/MS reaction cell on I20-EDE

 \square

MAIL-IN DATA

COLLECTION

Modes of Access for Industry

We collect & analyse your data & send you a detailed report

Send your samples to Diamond & collect data from home

Send your samples to Diamond & analysed your data at home

For more information please visit www.diamond.ac.uk/industry or contact industry@diamond.ac.uk

R

REMOTE

ACCESS

