

A beam-shaping system for TIMEX beamline

ACTOP11, Diamond Light Source Ltd, Oxfordshire, UK 4th-5th April 2011

photo injector

FERMI@Elettra

electron beam transport systems to undulator FELI&II

Undulator to experimental area photon beam transport lines

Experimental hall

On-Line Photon Energy Spectrometer

FERMI @elettra On-Line Photon Energy Spectrometer

ACTOP11, Diamond Light Source Ltd, Oxfordshire, UK 4th-5th April 2011

elettra

FERMI@Elettra Milestone

23rd December 2011 *First photon energy spectrum acquired* with the photon energy spectrometer.

E=28.6eV AE=60meV

Experimental hall

LDM: Low Density Matter

ref. F. Parmigiani, S. Svenson, K. Prince, S. Stranges, J. M. Dyke, T. Möller, F. Stienkemeier...

DIPROI: DIffraction and PROjection Imaging

ref. M. Kiskinova, F. Capotondi, B. Kaulich, H. Chapman, J. Hajdu, A. Nelson...

EIS: Elastic and Inelastic Scattering

-TIMER: TIME-Resolved spectroscopy of mesoscopic dynamics in condensed matter -TIMEX: ultrafast TIme-resolved studies of Matter under EXtreme and metastable conditions ref. C. Masciovecchio, F. Bencivenga, A. Di Cicco, E. Principi, F. Bencivenga...

TIMEX: ultrafast TIme-resolved studies of Matter under EXtreme and metastable conditions

Main TIMEX scientific goals:

ultrafast studies (conductance, reflectivity, trasmission, scattering) of warm dense matter (WDM)

- transitions occurring in stable, metastable and excited states under extreme conditions

ACTOP11, Diamond Light Source Ltd, Oxfordshire, UK 4th-5th April 2011

Wavelength	FEL	Harmonic	Spot size _{FWHM}	Flux	Fluence
(nm)			(μm x μm)	(Ph/pulse)	W/cm ²
1.7	2	3 rd	2.9 x 3.0	5.9·10 ⁸	3.1·10 ¹³
3.3	2	3 rd	3.0 x 3. 1	3.4·10 ⁹	8.1·10 ¹³
4	2	1 st	3.1 x 3. 1	1.9·10 ¹¹	3.7·10 ¹⁵
6.7	1	3 rd	4.8 x 5. 1	2.2·10 ¹⁰	8.5·10 ¹³
10	2	1 st	2.7 x 2.7	6.9·10 ¹²	6.1·10 ¹⁶
20	2	1 st	2.7 x 2.7	2.8·10 ¹³	1.2·10 ¹⁷
20	1	1 st	5.1 x 5. 1	6.5·10 ¹²	6.2·10 ¹⁵
6 0	1	1 st	6.2 x 5. 2	5.1·10 ¹³	1.3·10 ¹⁶
100	1	1 st	6.2 x 6. 1	1.0·10 ¹⁴	1.5·10 ¹⁶

The natural spatial Gaussian distribution of the focused photon beam is not suitable for the TIMEX porpuses

Need for a versatile beam-shaping system

In the VUV/soft X-ray range the beam-shaping is possible by using reflective elements with peculiar shapes

Use the plane mirror as an active mirror

ACTOP11, Diamond Light Source Ltd, Oxfordshire, UK 4th-5th April 2011

Simulations made for a 5nm radiation with divergence of 7.5 μ rad

Almost **Flat-top** spot for irradiating the sample uniformly

Flat-top spot with tales for irradiating the sample and probing the temperature with a pyrometer

Double peak spot as pre-pump for compressing the sample due to superposition of shock waves

The sides of the mirror are blocked and the shape is changed due to the effect of the applied forces below the substrate

15 Piezo-actuators glued on the bottom of the mirror's substrate

HVPS MAS-TER

The piezo-actuators are controlled with an in-house developed high-voltage power supply HVPS MAS-TER (for info please refer to M. Cautero)

Mirror joystick inside the switching chamber

Standard optics actuator modified (0.625 µm/step)

-Gimbals mount (2.5 µrad/step)

Piezo actuator (fine pitch) (0.11 µm/volt)

Simple rotation (0.5 µrad/volt)

The prototype

Si substrate 400mm x 40mm x 10mm

8 piezo-actuators OPT 40mm x12mm x 0.6 mm

Supplier Omega Piezo Technology

The Active Correction Tool (ACT) calculates

- the iteraction matrix for a bimorph mirror with N piezos

Adaptive Correction Tool

Calculate N	ew CORRECTION vector			
Input error file Choose File no file selected				
	Calculate!			
Interaction Matrix infos	SLP_files=6 Pulse=100 Fri May 28 13:03:38 CEST 2010			
Calculate Ne	W INTERACTION MATRIX			
Numb	er of Pulse files			

Upload Pulse Files

Adaptive Correction Tool Adaptive Correction Tool **Pulse Files Upload** Remember to upload PULSE files in the right sequence 1st: no pulse on any electrode; 2nd: pulse on first electrode; 3rd: pulse on first & second electrode; ...; (N+1)th: pulse on ALL n electrodes of the mirror Shape [00..00] Choose File no file selected Shape [10..00] Choose File no file selected Shape [11..00] Choose File no file selected Choose File no file selected Shape [11..10] Choose File no file selected Shape [11..11] Choose File no file selected Pulse Voltage (Volt):

Calc Matrix

[Close][Howto pdf]

[Back] [Close]

The Active Correction Tool (ACT) calculates

- the iteraction matrix for a bimorph mirror with N piezos

-the voltage to apply to the piezo-actuators in order to obtain the desired mirror profile

Adaptive Correction Tool

CH.	Voltage Correction
00	+45.1 V
01	+16.6 V
02	-86.9 V
03	+40.9 V
04	+43.7 V

[Back] - [Close]

Example of calibration curves for the calculation of the iteration matrix with the ACT

ACTOP11, Diamond Light Source Ltd, Oxfordshire, UK 4th-5th April 2011

Within the end of May the final active optic mirror system will be mounted and tested with LTP

Wavefront propagation simulations with FOCUS

Ray tracing simulations to figure out the shape needed to correct the effect of the slope errors in the previous/follow mirrors

TIMEX beamline will be installed within end of June 2011

Thank you for your attention!

Acknowledgments

F. Bencivenga, R. Borghes, G. Bortoletto, C. Callegari, M. Cautero,F. Cianciosi, R. Cucini, D. Cocco, F. D'Amico, A. Di Cicco,C. Masciovecchio, E. Principi, R. Sergo, G. Sostero...