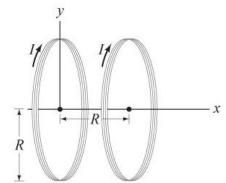
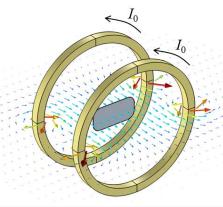

A multi-purpose 3D-Helmholtz-Coil for high accuracy measurements and calibration

Olaf Dunkel, David Giloteaux, Vittorio Remondino, Stephan Russenschuck

Named after the German physicist Hermann von Helmholtz (1821 – 1894)

Def.: (Merriam-Webster)


One of two equal parallel coaxial circular coils in series that are separated from each other by a distance equal to the radius of one coil for producing an approximately uniform magnetic field in the space between the coils.

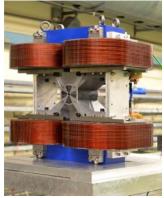

- Two equal circular coils (solenoids)

👥 diamono


- Placed symmetrically on the same axis
- Separated by a distance equal to the radius of the coils (h = R)
- Both coils powered by identical current in the same direction
- Generates a homogeneous field in the centre between the two coils
- Works also as a 3 dimensional construction
- Can be used in a passive mode as pick-up coils

Why an accurate 3D Helmholtz coil for CERN ?

- Increasing need for qualification of permanent magnets for accelerator projects (i.e. Linac 4, n-tof, Clic)
- Dimensions from ~10 mm up to 80 mm edge length
- Various calibration issues (see talk Thomas Zickler on 05-06-2017):
 - * Hall sensors (3D)
 - * Earth field compensation
- Off-the-shelf coils: Accuracy >> 1%, extremely low field and/or small homogeneous field size


Halbach array in a Linac 4 PMQ

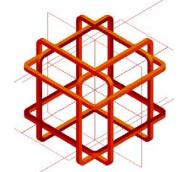
 SM_2CO_{17} Permanent magnet with edge length of 80 mm

168 of those magnets assembled to a 2.6 t dipole for the n-Tof EAR2 experiment

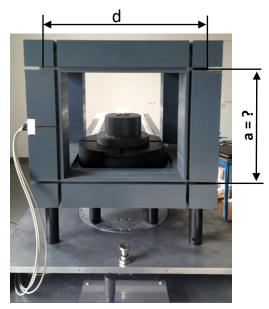
Permanent magnets in the CLIC Q0 Hybrid Quadrupole

Customized design from industry:

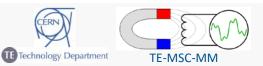
- Limited resources for in-house development
- We buy a customized design from an industrial supplier
- Proposal of a square-shaped design
- Simply up scaled from an existing, small 'standard' design



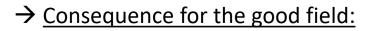
Problem:

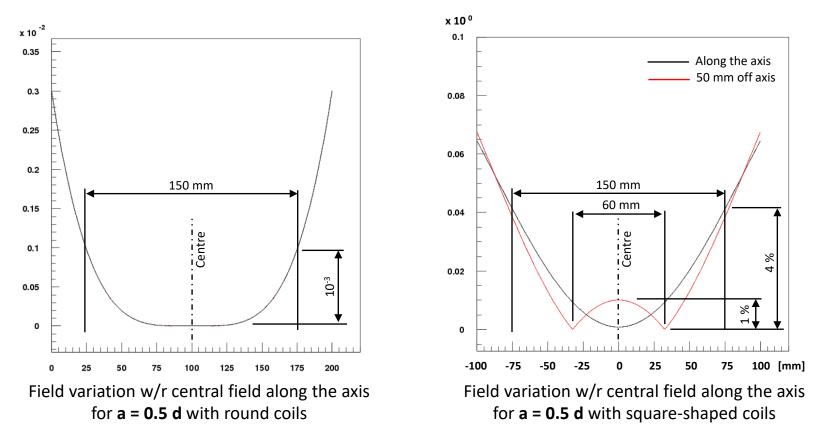

une 2017 Diamond Light S

For round coils: **a** = **0.5 d** For square shaped coils: **a** = **0.5445 d** ! (6th order polynomial...)


💀 diamond

Ideal design for square-shaped Helmholtz Coil a = 0.5445 d




Square-shaped Helmholtz Coil from industry

Customized design from industry:

We strongly depend on a high reproducibility of the probe position in the coils.

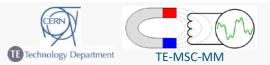
Specification of our own design:

"Wish-list"	Specification frame
3D construction	
Largest possible homogeneous field size to reduce dependence on accurate mechanical support.	~ 150 mm
Highest possible homogeneous field (~ 10x earth field) to optimize the resolution for calibration issues.	5 – 10 Gauss
Field homogeneity of the good field	~ 10 units
Operation both in passive and active mode.	Adequate power supply
Non conductive supports to avoid Eddy-currents in case of dynamic operation.	EPGM 203 (G11), PEEK
Same field strength for all three axes in using one power supply	Needs to compensate with coil size and number of turns

Design parameters:

Coil design to optimize homogeneous field size and field strength or: How to choose "reasonable" parameters to get our "wish gift"?

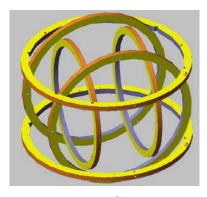
Field strength in a Helmholtz coil:


$$B = \left(\frac{4}{5}\right)^{\frac{3}{2}} \mu_0 \frac{NI}{r} \qquad [T] \qquad \stackrel{-I = \text{ current [A]}}{\stackrel{-N = \text{ number of turns}}{\stackrel{-r = \text{ coil radius [m]}}{\stackrel{-\mu_0 = \text{ permeability } [4\pi \times 10^{-7} \text{ N/A}^2]}}$$

Our approximation:

- Coil Ø: ~1000 mm, r = ~500 (to get ~150 mm homogeneous field size)
- Conductor diameter: 0.5 mm (enamelled copper wire)
- Current: I =0.2 A (corresponds to ~1 A/mm², quite conservative)
- Number of turns: N ~ 2200

B~7.9G - this is what we want


Design and construction:

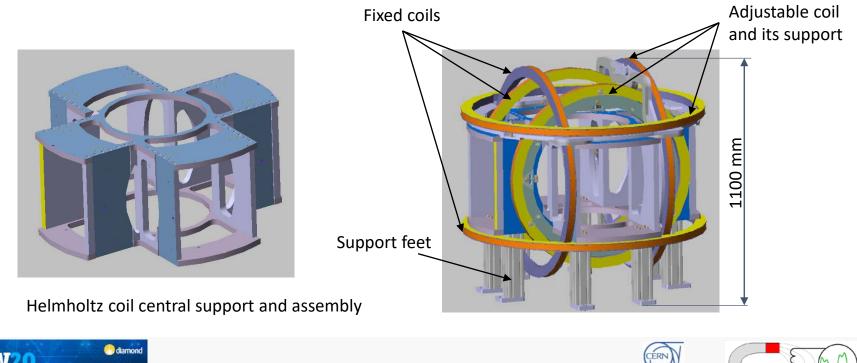
Optimize the coil design for a 3D construction (3 coil pairs) : Remember: Same field for the three directions with on power supply.

Ideally 3 identical coil pairs with identical distance \implies in practice not feasible!

Virtual... (all coils the same size)

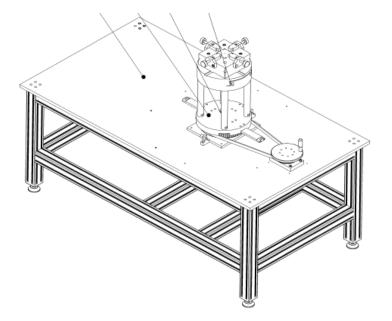
...Reality (3 different coil diameters)

Final coil parameters 3 different coil pairs:	with	Radius	Nb. Turns	Resistance	Inductance	Exp. field @ 0.2 A
		[mm]		[Ω]	[H]	[G]
	Coils x	436.5	1955	497	8.3	8.05
	Coils y	497.5	2225	645	12.3	8.04
	Coils z	563.0	2522	825	17.8	8.05



The construction:

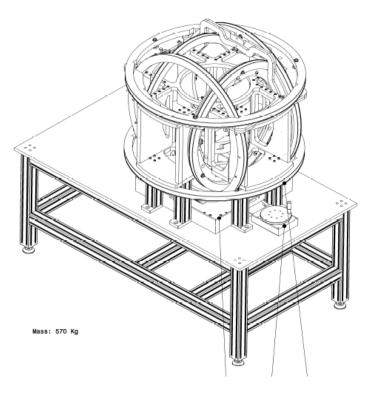
- Solid support and coil cores from EPGM 203 (G11), accuracy 0.1 mm.
- Wide apertures to introduce easily even bigger probes.
- 1 fixed coil for each axis (orthogonality relying on the accuracy of the support).
- 1 adjustable coil for each axis to align distance, coil axes and planarity.
- Accurate layer winding of the coils to ensure good field quality
- Each coil individually cabled (possible configuration as Maxwell-Coil, gradients, etc.)

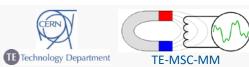

Olaf.Dunkel@cern.ch

TE Technology Department

TE-MSC-MN

Design and construction:


The complete picture:


Support table with hand driven rotation device (recovered from industry project)

👥 diamond

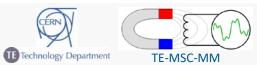
1th – 9th June 2017, Diamond Light So

Helmholtz coil on its support table

Assembly:

Some pictures from the production in industry...

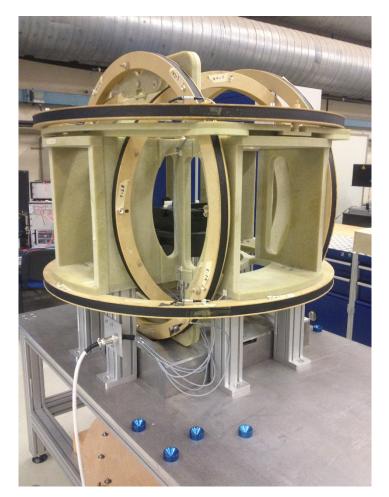
Assembly of the central support


Coil cores before winding

Hand winding facility

Accurate layer winding

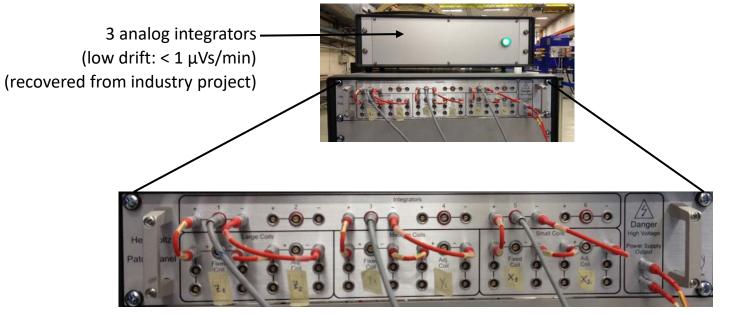
Assembly:


...and the assembly at CERN:

diamond

4th - 9th June 2017, Diamond Light Sou

Mounting of the lowest coil and the support feet

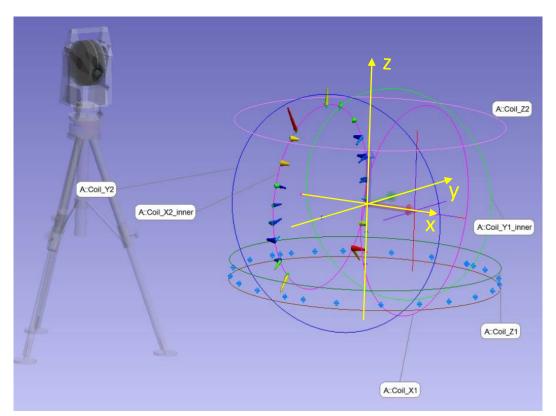

Helmholtz coil completely assembled

Assembly:

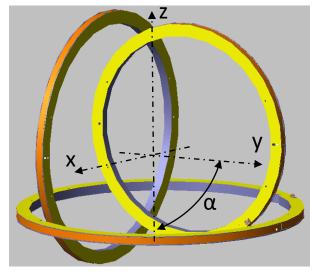
The measurement system:

Switchboard allowing interconnecting and powering individually all 6 coils

DC power supply: FUG MCP 140-6500 0-1000 V, 0-200 mA Setting range: 0.1% - 100% with 20 bit resolution



TE-MSC-MM


Geometrical check:

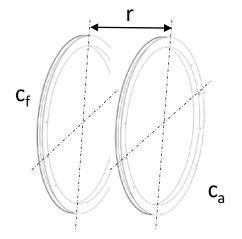
Laser tracker measurements of the geometry after the first assembly:

C_f

👥 diamond

TA

4th – 9th June 2017, Diamond Light Sc


Orthogonality of the fixed coils:

Coils	A (deg.)	Δα (deg.)	Δα (mrad)
x _f - y _f	89.966	0.034	0.57
x _f - z _f	89.963	0.037	0.65

Angle between fixed and adjustable coils:

Coils	α (deg.)	α (mrad)
x _f - x _a	0.0456	0.80
y _f - y _a	0.0953	1.66
z _f - z _a	0.0791	1.38

C_f $\Delta_z \Delta_x$ C_a

👥 diamond

1th - 9th lune 2017 Diamond Light!

Distance between fixed and adjustable coils:

Coils	r _{theory} (mm)	r _{real} (mm)	Δr (mm)
x _f - x _a	436.5	436.29	0.21
y _f - y _a	497.5	497.41	0.09
z _f - z _a	563.0	563.30	0.30

Concentricity between fixed and adjustable coils:

Coils	X	Y	Z
	(mm)	(mm)	(mm)
x _f - x _a		0.33	0.75
y _f - y _a	0.01		0.47
z _f - z _a	0.31	0.57	

Flatness of the coils:

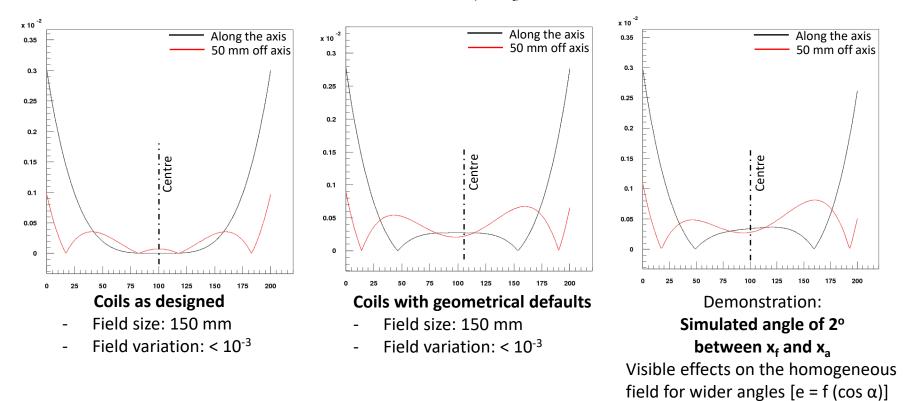
diamond

4th – 9th June 2017, Diamond Light Sou

Coils	min (mm)	max (mm)	abs. (mm)
x _f	-0.40	0.41	0.81
X _a	-0.08	0.12	0.20
Υ _f	-0.11	0.17	0.28
Y _a	-0.33	0.38	0.71
Ζ _f	-0.36	0.31	0.67
z _a	-1.50	1.04	2.54

Important irregularity of flatness on the adjustable z-coil.

Must be looked up more closely and be redressed.



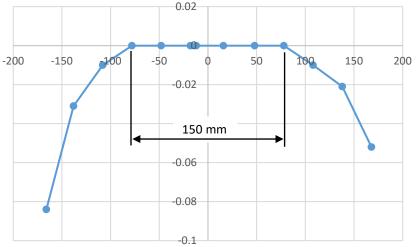
nond 😳

e 2017 Diamond Light

Homogeneous field size and the effect of the geometrical defaults on the good field (Roxie simulation for the smallest coil pair $(x_f - x_a)$:

Effects < 10^{-3} on the homogeneous field. Min. homogeneous field size (for $x_f - x_a$): 150 mm ($y_f - y_a = 190$ mm, $z_f - z_a = 220$ mm).

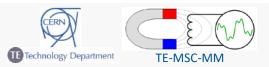
First measurements of field strength and homogeneity :


Bartington 3D fluxgate Bartington Mag-03MS1000 Range: 0 to 10 G, resolution 0.01 G

Field in the centre (@ 200 mA):

👥 diamond

9th _ 9th June 2017 Diamond Light Sec.


Coils	B _{design} (G)	B _{mes.} (G)	ΔB (G)
x _f - x _a	8.05	8.30	0.25
y _f - y _a	8.04	8.39	0.35
z _f - z _a	8.05	8.30	0.25

Measured homogenious field size for the smallest coils (x) @ 200 mA

Most probably due to:

- Earth field
- Fluxgate accuracy

Work still ahead:

- Measure homogeneous field size and field homogeneity more accurately
- Adjust geometry (if necessary)
- Motorize the rotation to reduce measurement time (integrator drift)
- New electronics (digital integrators, adjustable gain,...?)
- Achieve higher field (increase current for short duration)
- Use as Maxwell coil
- Etc...
- And, of course, measure magnets and calibrate instruments !

Thank you for listening! \rightarrow Any questions?

