

Haruhiko Ohashi 大橋 治彦 hohashi@spring8.or.jp SPring-8 Joint Project for XFEL

Collaborators

<u>SPring-8 Joint Project for XFEL (RIKEN and JASRI)</u>
M. Yabashi, K. Tono, T. Togashi, Y. Inubushi, T. Sato,
T. Hatsui, K. Tamasaku, M. Nagasono, T. Kudo,
H. Yumoto, H. Kimura, Y. Senba, S. Goto
T. Ishikawa, and accelerator staffs

<u>Osaka University</u> K. Yamauchi, Y. Sano, H. Mimura

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi

Spring has come !

Cherry blossoms "SAKURA" in full bloom.

4-5 April 2011 ACTOP11, DLS, UK : SPring-8 H. Ohashi

SPring Japan – XFEL SACLA さくら **SPring-8** Angstrom Compact Free Electron Laser LA SPring. 8

©RIKEN/JASRI

SPring

(1) Introduction : **Characteristics of photons** at 3GLS & NGLS (Next Generation Light Sources) **Requirements for BL optics at NGLS** (2) Current status of SACLA (3) Challenges of BL optics at SACLA (4) Summary

Current status of SACLA

(1) Introduction :
 Characteristics of photons

 at 3GLS & NGLS (Next Generation Light Sources)

 Requirements for BL optics at NGLS

optics at SACLA

©RIKEN/JASRI

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi

Advances of SR sources have stimulated to develop new BL technologies. 3GLS: 1990's

<u>2GLS : 1970's</u>

dedicated storage ring

SPring

Vacuum compatible monochromator

Managing high heat load Micro/nano focusing

low-emittance storage rings w undulators

Ultimate low emittance \rightarrow *spatial coherent x-rays*

©RIKEN/JASRI

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi <u>Towards Next Gen Light Source</u> Single-pass FEL

electrons radiation S

The superposition of spontaneous radiation of electrons with NO phase correlation

electrons radiation FEL

Phase correlated electrons bunched in short comparable to the wavelength of x-rays

Phase correlated electrons \rightarrow

Coherent x-rays Short pulses

©RIKEN/JASRI

Typical characteristics of photons at 3GLS & Next GLS (Ultimate Ring, XFEL)

	3GLS (SPring-8)	Ultimate Ring	XFEL (SACLA)	
Pulse width	ps	ps	fs	
Peak Brilliance	10 ²²	× 10 ²	× 10 ¹⁰	
Spatial Coherence	0.1%	~ 100%		
	13 terran			

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi

The key issue for BL optics at Next Generation Light Source both XFEL and state-of-the-art SR

> To handle and apply the coherent x-rays

XFEL (SACLA)

(1) Introduction : (2) Current status of SACLA (3) Challenges of BL optics at SPring-8/SACLA (4) Summary

	USA LCLS	European XFEL	Japan SACLA	
Total length	2 km (of 4 km)	3.3 km	0.7 km	
E-beam energy	14 GeV	17.5 GeV	8 GeV	
Wavelength	0.15 nm	0.085 nm	0.06 nm	
Rep rate	120 Hz	27,000 Hz	60 Hz	
Operation	2009~	2014~	2011~	
First High rep. rate Compact				

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi

High-quality Electron source

Small emittance even at low-energy operation High-gradient C-band linac

Short-period, in-vacuum undulator Suppression of acc. energy

for hard x-ray production

Under commissioning

y toward lasing

Roadmap

SPring

1st period Construction has been completed

	FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013
SACLA 8 G	Acceler Inj	ator & Undula ector & Accel	ator building Exp. erator Undu	building Jator & bear Build. Operation	nline RF ac Bea Commis	ging/ am sioning N d	User o lew beamlines evelopment	peratio Seeding
8 0.25	Exp bu Test ope	ilding ration Ma	chine R&D		U	ser operati	on N	

SACLA (SPring-8 Angstrom Compact Free Electron Laser) 5-year construction (April 2006 ~ March 2011) User operation Early 2012~

Accelerator

C-band tubes in the tunnel

©RIKEN/JASRI

SACLA

18 undulators for BL3 λu 18mm × N 5000 90 m long SACLA

Experimental hall

To SPring-8

SPring-8

HX

HX

S

SX

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi

Optics hutches

XFEL

Experimental hutches

<u>5 beamlines can be installed.</u> <u>1st beamline (BL3) :</u>

Commissioning started March 2011.

First x-ray (undulator radiation) at SACLA, <u>March, 2011</u>

Press release : 2011/3/29 <u>http://www.spring8.or.jp/ja</u> (only Japanese)

SACLA BL3 OH, EH1,2,3 and 4

OH: Common optics & diagnostics

BL3

Laser booth

(CPA, OPA)

EH1: R&D, beam conditioning optics

EH2: Pump & Probe unfocused beam

Matter under extreme conditions with 1-um focusing

7 m

EH4: Open hutch

XFEL-SPring-8 Exp. Facility BL1

XFEL-SPring-8 Experimental Facility

Start construction in August, 2010 Completed in March, 2011

Pump-Probe Experiment with XFEL + SPring-8 Undulator Radiation

SPring

(1) Introduction : SACLA **Characteristics of photons** at 3GLS and Next Generation Light Sources **Requirements for BL optics at NGLS** (2) Current status of SPring-8/SACLA (3) Challenges of BL optics at SPring-8/SACLA (4) Summary

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi BL optics for handling XFEL

Pulsed nature

Mirror, Window, Beam splitter, crystal

XFEL

©RIKEN/JASRI

Coherence

Shot-to-shot fluctuation

Manipulator of mirror & monochromator

SPring-8 4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi **Requirements for XFEL optics**

Damage-free optics

fs-synchronization

Speckle-free optics

XFEL

Shot-by-shot diagnostics

Coherence

Shot-to-shot fluctuation

Stable system

SPring & XFEL handling at beamline

Speckle-free optics

Pulsed nature Damage-free optics

XFEL

Shot-by-shot

diagnostics

Fast 2D-detector

Coherence

Metrology @1km-BL Shot-to-shot fluctuation

Stable system& DACMirror & monochromator©RIKEN/JASRI

SPring 2011 ACTOP11, DLS, U Focusing system for multi purpose Focus size ~ 1 μm, Speckle-free

 MA
 MB

 (Vertical focusing)
 400 mm

 400 mm
 50 mm

 400 mm
 400 mm

 100m
 1550mm

 2000mm

~1 m

Working distance

UHV compatible manipulator

Normalized Intensity [arb. unit] 1.2 Normalized Intensity [arb. unit] 2. Focusing system Vertical Horizontal for example, 0.8 75nm 55nm intense laser science 0.6 0.4 Focus size ~ sub-µm 0.2 -0.5 -0.2 -0.1 0.3 -0.30.4 -0.5 -0.2 0.2 0.3 0.5 Position [µm] Position [µm]

©RIKEN/JASRI

X-ray autocorrelator

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi

• Components: 2 channel-cut crystals + 2 thick (flat) crystals + 2 thin (flat) crystals

- Simple geometry with wavelength tunability
- Channel-cut: Large size & speckle-free quality

Diffraction image of channel-cut

4-5 April 2011 ACTOP11, DLS, UK : SPring-8 H. Ohashi

SPring-8-SLAC-DESY Collaboration

SACLA

~100 μm

SPring

SPring & XFEL handling at beamline

fs-synchronization

Damage-free optics

Monochromat

Speckle-free optics

Mirror, window Beam splitter

XFEL

Pulsed nature

Coherence

attinution the sector of the

Shot-to-shot fluctuation

Detector

Analyzer crysta

UV-ShOl

nostics

-detector & DAC

©RIKEN/JASRI

SASE source has shot-to-shot fluctuation → To handle the coherent x-rays stably

Monochromator for XFEL BL

- SPring-8 H. Ohashi
- Contamination-free UHV-compatible
 High stability
 New manipulator developed
 Use of large (90mm) Si with small offset (20mm)
 No sliding surface Flexure hinges
 High resolution Piezo liner actuator

Axis	Range	Resolution
θ	-1~30 [deg]	1 [µrad]
Х	60 [mm]	0.1 [mm]
⊿ө	±0.5 [deg]	0.1 [µrad]
∕Z	±1 [mm]	10 [µm]
Ту	±0.5 [deg]	1 [µrad]

High-stable stages <0.1 μrad for 30 min <1 μrad for 24 hr

4-5 April 2011 ACTOP11, DLS, UK : SPring-8 H. Ohashi

SPring OCM : Typical results of Δθ

Requirements of $\Delta \theta$

Resolution

4-5 April 2011 ACTOP11 , DLS, UK : SPring-8 H. Ohashi

shi SACLA

> to prevent water tubes from dragging the crystal

"*Double tubing*" is soft and stable in vacuum.

SPring & XFEL handling at beamline

Detecto

fs-synchronization

Damage-free optics

Monochrom

Speckle-free optics

Mirror, window Beam splitter

XFEL

Pulsed nature

Coherence

Shot-to-shot fluctuation

Beam intensity &position **ot** monitor

Fast 2D-detector & DAQ

©RIKEN/JASRI

Multi-port CCDs : Day-One Detector for many applications

- Max 3 000 ph.@6 keV 50 μm
- Noise 0.18 ph. @ 6 keV
- Q.E. 80 % at λ= 2
- Q.E. 20 % at λ= 1

Octal Sensor Detector 2048 x 2048 pixels

SACLA

Single Sensor Detector 512 x 1024 pixels

1. The key issue for BL optics at NGLS both XFEL and state-of-the-art SR is to handle and apply the coherent x-rays.

2. Speckle-free, damage-free optics and highly stabilized optical system are required for NGLS.

3. SPring-8 Angstrom Compact Free Electron Laser (SACLA) just starts commissioning.

Acknowledgement

ISOC of ACOTP11 K. Sawhney, S. Alock, R. Barrett, D. Cocco, M. Idir, F. Siewert, and S. Fletcher, S. Hartrampf,

L. Holland

Thank you for your kind attention!

As for earthquake in Japan,

a lot of friends around the world assist us.

We express the deep sense of appreciation