

HALL MAGNETIC SENSOR DEVICES

Radivoje S. Popovic

EPFL, Swiss Federal Institute of Technology Lausanne, Switzerland,

and

SENIS AG, Zug, Switzerland

Why HALL MAGNETIC SENSORS?

- High measurement range: from <10µT to >20T
- High spatial resolution: <1µm
- Broad bandwidth: DC to >1MHz
- Vector sensitivity
- Compatible with IC technologies
- Good performance cost ratio

Popovic Hall Devices 2017

Outline

- The Hall Effect
- Magnetic Sensitivity
- Technology and Geometry
- Horizontal and Vertical Hall Devices
- 3-Axis Hall Magnetic Sensor
- Parasitic Effects

The Hall Effect

Edwin Hall:

"On a new action of the magnet on electric current" Am.J.Math. 2 (1879) pp.287-92

 $V_{\rm H} \propto I \cdot B$

Popovic Hall Devices 2017

B **Lorentz Force:** $F = eE + e[v \times B]$ $v_{dn} = \mu_n E_e$ $\boldsymbol{J}_n = q\mu_n n \boldsymbol{E}_e$ **Electron Drift:** $e[\boldsymbol{v}_d \times \boldsymbol{B}] + e\boldsymbol{E}_H = 0$ Force || **z** = 0: $oldsymbol{E}_{Hn} = rac{1}{qn} [oldsymbol{J} imes oldsymbol{B}]$ Hall Electric Field: $E_{Hn} = \mu_n [E \times B]$ $\boldsymbol{E}_{H} = -R_{H}[\boldsymbol{J} \times \boldsymbol{B}]$ $R_{Hn} =$ Hall Coefficient: qn

Popovic Hall Devices 2017

The Hall Electric Field

Hall Voltage &
Magnetic Sensitivity
Hall Voltage:
$$V_H = \int_{S_1}^{S^2} E_H \, dw$$

 $V_H = E_H w$
 $E_{Hn} = \mu_n [E \times B] \Rightarrow V_H = \mu_n \frac{V}{l} w B_\perp \Rightarrow V = RI = \frac{1}{q\mu_n n} \frac{l}{wt} I$
 $V_H = S_V V B_\perp$
Voltage-Related Sensitivity:
 $S_V \approx \mu_n \frac{w}{l}$
Popovic Hall Devices 2017
 $V = RI = \frac{1}{qn_t} \frac{l}{nt} R_H$
 $V_H = S_I I B_\perp$
Current-Related Sensitivity:
 $S_I \approx \frac{1}{qn_t} \approx \frac{R_H}{t}$

Popovic Hall Devices 2017

7

Geometrical Factor of Hall Voltage

Short – circuiting effects by the electrodes!

$$G_{\rm H} = V_{\rm H} / V_{\rm H\infty} \longrightarrow V_{H} = G_{H} \frac{R_{H}}{t} IB_{\perp}$$

Typically, $G_{\rm H} \approx 0.3 \dots 0.7$

Magnetic Sensitivity

• Absolut Sensitivity:

$$S_A = \left| \frac{V_H}{B_\perp} \right|_c$$

 Relative Sensitivity Current-related:

Voltage-related:

$$S_{I} = \frac{S_{A}}{I} = \left| \frac{1}{I} \frac{V_{H}}{B_{\perp}} \right| \quad S_{V} = \frac{S_{A}}{V} = \left| \frac{1}{V} \frac{V_{H}}{B_{\perp}} \right| = \frac{S_{I}}{R_{in}}$$
$$S_{I} = G_{H} \frac{|R_{H}|}{t} \qquad S_{V} = \mu_{H} \frac{w}{l} G_{H}$$

S_/[V/AT]: 10 ... 1000

S_v [V/VT]: 0.01 ... 0.05 (Si CMOS); 0.3 (GaAs); 1 ... 5 (InSb) 9

Shapes of Hall Devices

Positions of Hall Devices

GaAs Hall Device

High-mobility 2DEG Hall plate

Silicon (Horizontal) conventional planar in Hall Device

- Sensitive to the perpendicular field component **B**
- CMOS Technology: N-Well
- Depletion layer isolation

INTUITIVE: GENESIS OF THE VERTICAL HALL DEVICE

BY CONFORMAL MAPPING:

16

Multi-axis Hall magnetic sensors

Conventional: 3 Hall plates

Integrated: Single Chip

> VH + HH

> IMC - Hall

- difficult alignment of axes
- pure spatial resolution
- many wires

- perfect alignment
- high resolution
- shared wires

Popovic Hall Devices 2017

SENIS 3-axis Hall Probe S

Hall Probe S for H3A Magnetic Field Transducers

Hybrid 1-, 2-, 3-axis Hall Probe

SENIS 3-Axis Integrated Hall Sensor

Magnetic field sensitive volume: 100μm x 100μm x 10μm

Integrated 3-Axis Hall Probe

Sensing part composed of two types of micro-Hall sensors

- 4 planar Hall sensor the perpendicular B-component
- 8 vertical Hall sensors the in-plane B-components
- Mutual orthogonality: 0.1°

3D spatial resolution: 150 μm

SENIS fully integrated 3D Hall sensor

Precise 3D magnetic field measurements

- from militeslas up to tens of tesla
- in the frequency range from DC to 30 kHz
- \bullet spatial resolution of about 150 μm
- die dimensions: 4300 μm x 640 μm x 550 μm

Sensing part composed of two types of micro-Hall sensors

- a planar Hall sensor the perpendicular B-component
- 8 vertical Hall sensors the in-plane B-components

SENIS fully integrated 3D Hall probe in a ceramic package

SENIS fully integrated 3D Hall probes in ceramic packages

Fully integrated 3-Axis Hall Probe HL, HM, HS

SENIS Very Thin fully integrated 3D Hall probes

Probe Holders

Parasitic Effects in Hall Devices

- Offset
- Noise

...

- Planar Hall effect
- Non-linearity
- Temperature dependence
- Stress dependence
- Inductive effects

Offset in a Hall Device

CAUSES: ASYMETRY DUE TO

- NY XY
- GEOMETRY
- · DOPING
- · TEMPERATURE GRAD.
- MECHANICAL STRESS
- · SURFACE EFFECTS

TYPICAL VALUES: B. ~ 5... 50 mT

OEMF:

Offset-Equivalent Magnetic Field

 $OEMF = V_{off} / S_A$

V_{off}: Output offset voltage [V]

*S*_A: Absolute magnetic sensitivity [V/T]

Basic OEMF:

- Si integrated Hall elements: 5mT 50mT
- High-mobility Hall elements: ca. 1mT

Offset Fluctuations and Noise

Figure 1. Gaussian Distribution of Noise Amplitude

- σ^2 : Variance
- σ: Standard deviation

 v_{nRMS} : Root Mean Square noise voltage

 v_{nP-P} : Peak-to-Peak noise voltage

 $V_{nRMS} = \sigma$ $V_{nP-P} \approx 6 V_{nRMS}$

Noise Voltage Spectral Density of a Hall Device

Noise Spectral Density and Noise Voltage

RMS noise voltage:

NEMF:

Noise-Equivalent Magnetic Field

 $NEMF = V_n / S_A$ or $NEMFSD = V_nSD / S_A$

 V_n : Output noise voltage [V] V_n SD: Noise voltage spectral density [V/VHz] S_A : Absolute magnetic sensitivity [V/T]

NEMF[T] – depends on the frequency bandwidth NEMF Spectral Density [T/VHz] – a detailed spec.

Typical values of NEMF SD

Thermal noise region, at room temperature:

• integrated silicon Hall elements: about 100nT/VHz;

• GaAs epitaxial or 2DEG Hall elements: about 20nT/vHz;

• high-mobility thin-film InSb Hall elements: about 1.5nT/VHz.
Parasitic Effects in Hall Devices

- Offset
- Noise

...

- Planar Hall effect
- Non-linearity
- Temperature dependence
- Stress dependence
- Inductive effects

Planar Hall Effect

MR Model of the Planar Hall effect

Summary

- Hall Plate:
 4 Contacts, *B* ⊥ Plate
- Hall Voltage:

$$V_H = V B_\perp = S_I I B_\perp$$

• Errors: Offset, Noise, Planar Hall Effect, ...

Where to get more information

R S Popovic: "Hall Effect Devices" 2nd Edition, 2004

Institute of Physics Publishing, IOP, Bristol and Philadelphia

HALL MAGNETIC SENSORS - SIGNAL PROCESSING

Radivoje S. Popovic

EPFL, Swiss Federal Institute of Technology Lausanne, Switzerland,

and

SENIS AG, Zug, Switzerland

Hall Devices

GaAs Hall Device

(a) CP (b) N-well N^+ **Depletion Layer** P-Substrate Integrated **Horizontal Hall Device**

B

- C1

Integrated **Vertical Hall Device**

Outline

- Amplification of the Hall voltage
- Reducing offset, low-frequency noise, planar Hall effect, inductive effects, ...
- Reducing angular errors
- Amplification of the magnetic signal
- Experimental Results

Amplifying the Hall voltage

S: absolute magnetic sensitivity of the transducer

Va: total artifact signal (noise voltage, offset, ...)

Resolution limit: when S · B ≈ Va, i.e. Bres ≈ Va / S

Magnetic Resolution Limit

The magnetic resolution limit – when Signal to Artifact Ratio ≈ 1 Bres ≈ Artifact-Equivalent Magnetic Field, AEMF = Va / S Va: artifact signal (noise voltage, offset drift, ...)
S: absolute magnetic sensitivity

- DC resolution: limited by
 - offset (if can not be zeroed)
 - offset drift (thermal, aging, ...)
 - offset fluctuations (BW: ~ 0.1Hz to 10Hz)
- AC resolution: limited by noise
 - noise (thermal and 1/f)
 - bandwidth

Amplifying the signal of a bridge-type sensor

Noise model of a transducer

The Complex Model is Simplified

NOISE VOLTAGE (RTI) vs FREQUENCY

Example: INA 163 & $v_{n_s} \ll v_{n_ai}$

OFFSET IN A HALL DEVICE VA $V_{HO} \equiv V_H \text{ at } B=0$ $B_0 \equiv apparent$ $B_{meas} \text{ at}$ B=0VHO CAUSES: ASYMETRY DUE TO · GEOMETRY · DOPING . TEMPERATURE GRAD. · MECHANICAL STRESS · SURFACE EFFECTS TYPICAL VALUES: Bo ~ 5 ... 50 mT

MR Model of the Planar Hall effect

Reducing Offset and Noise: Orthogonal-Parallel Coupling of Hall Elements

1 × Hall: $Vnoise1 = \sqrt{4kTR\Delta f}$; 2 × Hall: $Vnoise2 = Vnoise1 / \sqrt{2}$;

N × Hall: *VnoiseN* = *Vnoise1* / \sqrt{N}

SENIS integrated orthogonally coupled Hall elements

Reducing Offset and 1/f Noise by Current Spinning

« Switched Hall » or « Spinning Current » Technique

Spinning-Current Hall Sensor System

Comparing Chopping with Spinning Current Technique

Residual Offset of Chopping (1)

- Due to charge injection at the input chopper
- Causes a typical offset of a few μV
- Input spikes \Rightarrow bias current (a few tens of pA)

Chopper With Guard Band

- During guard-band, output is shorted [15,16] or tri-stated [17]
- Residual offset ~ 200nV!
- Slightly worse noise performance

Smart Sensor Systems '02 Kofi A.A. Makinwa

1/f noise reduction in a Hall device by the spinning-current

SENIS integrated vertical Hall device: Noise voltage spectral density with spinning current

Reducing inductive effects

- Biasing by a constant current
- Spinning current

- Minimizing inductive loops
- Compensating inductive loops

Fully integrated 3D Hall probe

Precise 3D magnetic field measurements

- from militeslas up to tens of tesla
- in the frequency range from DC to 30 kHz
- \bullet spatial resolution of about 150 μm
- die dimensions: 4300 μm x 640 μm x 550 μm

Sensing part composed of two types of micro-Hall sensors

- a planar Hall sensor the perpendicular B-component
- 8 vertical Hall sensors the in-plane B-components

1ppm 2T Two-Axis Hall Transducer

Amplifying the magnetic signal: the concept of 2 IMC - Hall

Magnetic Flux Concentration Gain: $G_{MC} = B_{Hall} / B_{ext}$ $G_{MC} = 1 \dots 10$

Integrated Magnetic Concentrators (IMC)

Single Axis IMC Hall ASIC

Measured NEMFsd CSA-1V (Sentron)

Application: Low Cost Current Sensor

PHYSICAL LIMIT OF RESOLUTION

(Thermal) Noise-Equivalent Magnetic Field spectral density: NEMFsd,min $\geq \sqrt{4 k T R_H} / (G_{MC} S_V V_b)$

k – Boltz. constant; T – abs. temp.; $R_{\rm H}$ – resistance of Hall; $G_{\rm MC}$ – magn. gain of IMC; $S_{\rm V}$ - volt-rel. sensitivity; $V_{\rm b}$ - bias volt. NEMFsd,min ≥ $\sqrt{4 \ k \ T}$ / ($G_{\rm MC} \ S_{\rm V} \ \sqrt{P_{\rm b}}$)

 $P_{\rm b}$: bias power of Hall, $P_{\rm b} = V_{\rm b} I_{\rm b}$ For $S_{\rm V} = 0.05$ (contemporary max for Si Hall) and T = 300K:

NEMFsd,min \geq 82 nT/ $\sqrt{\text{Hz mW}}$ / G_{MC}

Electromagnet for calibrating Hall probes

$$S_V \approx \mu_n \frac{w}{l}$$

Magnetic Sensitivity Vector

Since

 $V_H = S_V V B_\perp$ and $V_H = S_I I B_\perp$

 $V_H = \mathbf{S} \cdot \mathbf{B}$ (the scalar product of \mathbf{S} and \mathbf{B})

S : Magnetic Sensitivity Vector of a Hall device

$$U_{out} = S_X \cdot B_X + S_Y \cdot B_Y + S_Z \cdot B_Z$$
Magnetic Sensitivity Tensor

 $\langle \mathbf{D} \rangle$

1 - axis Hall magnetic sensor:

$$V_1 = S_1 \cdot B \quad \Longrightarrow \quad V_1 = (S_{1X} \quad S_{1Y} \quad S_{1Z}) \begin{pmatrix} B_X \\ B_Y \\ B_Z \end{pmatrix}$$

3 - axis Hall magnetic sensor:

$$\begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} S_{1X} & S_{1Y} & S_{1Z} \\ S_{2X} & S_{2Y} & S_{2Z} \\ S_{2X} & S_{3Y} & S_{3Z} \end{pmatrix} \begin{pmatrix} B_X \\ B_Y \\ B_Z \end{pmatrix} \Rightarrow V_3 = (S_3) B \Rightarrow B = (S_3)^{-1} V_3$$

 (S_3) : Magnetic Sensitivity Tensor of a 3-Axis Hall Probe

Popovic Hall Signal Processing 2017

Calibrating the magnetic sensitivity tensor in an electromagnet

A tool for calibrating the magnetic sensitivity tensor

Calibration of the magnetic sensitivity tensor of a 3D Hall probe in the mapper

Calibration of the Magnetic Sensitivity Tensor - an example

... and after Calibration $\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 100002 & 0.0298746 & -0.00891582 \\ -0.103873 & 100038 & 0.0110116 \\ 0.0138412 & -0.0328856 & 100041 \end{bmatrix}$ $\begin{bmatrix} S \end{bmatrix} \approx Ss \bullet \begin{bmatrix} I \end{bmatrix} \qquad S_s = 100 \text{V/T}$

Definition of the angular errors of a probe

TILT is the angle of rotation around the y-axis; **ROLL** is the angle of rotation around the z-axis; **PITCH** is the angle of rotation around the x-axis.

Measurement of the angular errors of a 3D probe - an example

 $\bullet \bullet \bullet$

$$\begin{split} B_{c} \cdot S_{x} &= \sqrt{\frac{U_{xx}^{2} + U_{xy}^{2} + U_{xz}^{2} + \sqrt{\left(U_{xx}^{2} + U_{xy}^{2} + U_{xz}^{2}\right)^{2} - 4 \cdot U_{xy}^{2} \cdot U_{xz}^{2}}{2}}{2} \\ x_{r} &= \arcsin\left(\frac{U_{xy}}{B_{c} \cdot S_{x}}\right) \\ x_{t} &= \arcsin\left(\frac{U_{xz}}{B_{c} \cdot S_{x}}\right) \end{split}$$

Up-dated classification of magnetic measurement technologies*

