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Measurement of local field distribution 

Higher order imperfections in magnetic fields of short magnets play an important 
role in particle dynamics.

Local field distribution on the magnetic extremities is required for:

 Describing the longitudinal field profile 

 Studying the particle-beam dynamics

S. Russenschuck, “Field Computation for Accelerator Magnets”
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 Full mapping using a 3D Hall sensor 
– Not always suitable to get        
harmonics

 Translating-coil scanner on the magnet’s 
mid-plane

– Harmonics number limited by the 
transversal resolution (number of 
induction coils)

Measurement of local field distribution 

Available techniques for acquiring the local field distribution (1) 

S. Sanfilippo, “Hall Devices: Physic & Application to Field Measurements ”

S. Russenschuck, “Field Computation for Accelerator Magnets”
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 FEM/BEM validated by integral 
measurements

– Manufacturing errors and dynamic    
effects are not evaluated

 Measuring on the boundary surface and 
applying the concept of pseudo-multipoles

The proposed solution is based on the pseudo-multipoles analysis

Measurement of local field distribution 

Available techniques for acquiring the local field distribution (2) 

S. Russenschuck, “Field Computation for Accelerator Magnets”

IMMW20
S. Russenschuck
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Measuring the transversal field harmonics along z using an “infinitely” short
rotating coil, we obtain the entire field description

Measurement of local field distribution 
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To perform this measurement, the coil magnetometer must be non-sensitive to
the longitudinal (Bz) field component. This requires a saddle design coil.

Moreover, the compensation (bucking) scheme with coils at different radii will

not work (the scaling law is no more valid)

Winding on a mandrel 

Sputtering deposition 

Flexible printed-circuit board technology 

Measurement of local field distribution 

S. Russenschuck, “Field Computation for Accelerator Magnets”

IMMW20
S. Russenschuck
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Flexible printed-circuit board technology 

High precision in track positioning 

Reproducibility

Negligible thickness (~ 0.25 mm 4 layers)

Relatively cheap (considering the achievable 

precision)

Sensor design
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Design optimized by Roxie using the coil sensitivity factor equation 

S. Russenschuck, “Field Computation for Accelerator Magnets”

𝑟𝑟0 Measurement coil radius

N  Number of turns

𝑙𝑙(𝑧𝑧) Coil length

𝑛𝑛 Harmonic order

𝛿𝛿 Opening angle

Sensor design
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Optimization results

Sensor design
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Sensitivity factors for dipole compensated coil

Sensor design

M - Main coil

C - Compensation coil
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Sensitivity factors
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Sensor design

Sensitivity factors for quadrupole compensated coil

M - Main coil

C - Compensation coil
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Altium production design
IN

OUT

Layer 1

Layer 2

Layer 3

Layer 4

Extra Surface (ES)
Lost Surface (LS)
Nominal Surface (NS) 

Sensor Production
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Layer jump

In-out pins main coil 

In-out pins 
compensation coil 

Ø 40 mm

98 mm

Sensor Production

Main dimension
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First layer produced Insulation width 50 μm (main coil) 

Tracks width 40 μm

Production solution

Sensor Production
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Sensitivity analysis of manufacturing errors 

Position uncertainty Dipole bucking ratio Quadrupole bucking ratio

0 μm 130000 150

±20 μm 17000 150

±30 μm 16000 170

Tracks position error

Random 
gaussian error

PCB insulation thickness between tracks 50 μm
Maximum positioning simulated error of ±30 μm
Bucking ratio acceptable in all the cases 
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Sensitivity analysis of manufacturing errors 
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Shaft radius tolerance

Acceptable shaft radius tolerance ±0.05 mm
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Sensitivity analysis of manufacturing errors 
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Sn values computed in the radius tolerance range (-0.3 mm; +0.3 mm)
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Sensitivity analysis of manufacturing errors 
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Measurement system design for proof of principle

Translating system based on rails

 Appropriate mechanical stability

 Transversal position encoder

 Encoder and slip ring close to the sensor

 Electrical motor onboard
 Bulky structure (reducing the effective 

measurement radius)
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Measurement system design for proof of principle

Hall probe slotRoller Sensor’s shaft

Motor unit

 Versatile

 Reliable motor unit 

 Encoder and slip ring far 

from the sensor

Validation sensor setup

1 m
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SensorsSlip RingEncoder Ball Bearing

Measurement system design for proof of principle

Motor

Measurement system

 Versatile and light

 Encoder and slip 
ring close to the 
sensor

1 m
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Conclusion

Future steps

 Sensor calibration

 Sensor validation

 Optimize design of the transducer 

 Transducer production, assembly and commissioning 
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