Heating of a DCCT and a FCT due to wake losses in PETRAIII, simulations and solutions

D. Lipka, MDI, DESY Hamburg

Outlook

- PETRA III overview
- DCCT problem, calculation, simulation, solution
- FCT problem, simulation, solution
- Summary

PETRA III overview

DCCT

<u>DC Current Transformer</u> Measurement of beam current

Setup consists of pipe, ceramic, core, bellow, shielding

Temperature sensor near bellow

DCCT Problem at 2010

- Two cases of operation with different temperatures at the current monitor observed
- Case 1: I_1 =85 mA, N=160 Bunches gives about 70°C
- Case 2: $I_2=65$ mA, N=40 Bunches gives about 130°C
- Questions:
- 1. Why case 2 higher temperature?
- 2. Why temperature high?

DCCT: Answer 1

- Power $P = I Q k_{loss}$
- I is mean beam current
- Q is charge = I Δt
- Δt is bunch distance = t / N
- t is PETRA III revolution time = $7.685 \,\mu s$
- k_{loss} is voltage loss per charge for a structure
- Result in $P = I^2 t k_{loss} / N$
- $P_1/P_2 = 0.43$
- Because P₂ is higher the temperature is higher!
- Compare: $P_{E-XFEL,max}/P_2=0.0001$

Setup DCCT

DCCT: inner setup

Bellow shielded, but results in a resonator

Ceramic coated with Molybdenum.

When a charged particle moves through DCCT, it looses energy due to gap=8.2 mm!

DCCT simulation

- 1. Wakefield simulation with beam: get loss factor
- 2. Eigenmode of setup: get field distribution of losses
- 3. Thermal: input power and field distribution (all power will be used for heating), get temperature distribution

DCCT: Wakefield and Eigenmode Simulation

Setup: only vacuum part because of coated ceramic

Wake loss factor with 13.2 mm bunch length results to k_{loss} =39.1 V/nC ->P₁=13.6 W, P₂=31.7 W

Eigenmodes observed: highest loss factor of several V/nC with mode that has highest field amplitude between shielding and bellow

Type Monitor

Phase

DCCT Temperature Distribution P₂

Here the distance to cooling is only 200 mm, T_{max}=106°C, because heat radiation along pipe acts like a cooling, therefore this shortened model can be used

Measured 130°C; Simulation underestimates temperature by 18%, reason: mesh, perhaps higher loss factor in reality

DCCT: Temperature distribution P₂ with airflow

Here the simulation box increased with cooling at $x_{min,max}$ and $y_{min,max}$, T_{max} reduces from 106°C to 87.5 °C

Airflow switched off.

Lower Temperature because of lower power

Measured 70°C, simulation lower by 16%

DCCT: 1. proposal of smaller gap

Smaller gap = 1.7 mm should reduce energy loss

Gap near chamfer to result in good energy transmission

 $K_{loss} = 15.1 \text{ V/nC}$

DCCT: 1. proposal Eigenmode distribution

Field amplitude near gap

DCCT: 1. proposal temperature distribution P₂

Maximum temperature reduced from 106 °C to 55°C (remember: simulation underestimates temperature)

DCCT: 2. proposal without coating

gap = 1.7 mm symmetrically below ceramic

Ceramic without coating to result in higher energy transmission

 K_{loss} = 26.6 V/nC, because gap is deeper without coating

DCCT: 2. proposal temperature distribution P₂

Maximum temperature reduced from 106 °C to 85°C (remember: simulation underestimates temperature)

DCCT: 3. proposal with coating and additional shielding

gap = 8.2 mm like origin, coating actives

Shielding of resonator

 k_{loss} reduced to 4.4 V/nC, because influence of resonator avoided (P₂=3.6 W)

No resonance found below cutoff (2.44 GHz)

DCCT: 3. proposal temperature distribution P₂

°C

Type	remperature
Maximum-3D	31.2946 °C at -3 / -51.6667 / -3.1875
Frequency	0

Maximum temperature reduced from 106 °C to 31°C (remember: simulation underestimates temperature)

DCCT: solution

One of the proposals is realized:

Shielding of the bellow is realized. Temperature decreased from 130°C with I=65mA to e.g. 80°C with I=80mA and N=40 bunches.

Fast Current Transformer: FCT

- In 2011 FCT was broken
- Question: find reason
- Probably too high temperature
- FCT: fast responds therefore higher signal for shorter time necessary
- Core and ceramics delivered by company

FCT

Flange with cooling on back side: 33°C

Temperature sensor on body

FCT: simulation setup

FCT: wakefield simulation result

 $P = I Q k_{loss} = I^2 t k_{loss} / N = 47.9 W$ with I = 85 mA and N = 40

FCT: Eigenmode simulation result

- Dominant field distribution shows strong electric field in gap
- k_{loss} of this mode results in 25.2 V/nC
- Difference to wakefield results carried by higher order fields
- This mode will be used for thermal simulation and scaled to the wakefield power

Mode 2

0.705278

0 degrees

Туре

Phase

Monitor

Maximum-3D

Frequency

FCT: thermal simulation result

Settings: thermal conductivity and radiation with respect to the material properties

- Core get highest temperature: 193.1 °C
- Body: 64.9 °C (measured • 74°C)

Туре

FCT: reason for core temperature

- Magnetic field amplitude maximum at core position, see distribution on right plot
- Core is thermal isolated to the other components of the simulation (except due to thermal radiation)

Type Monitor

Maximum-3D

Frequency

Phase

FCT: after dismounting

- Melting of inner materials observed
- Assumption: inner temperature was above 300 °C
- Simulation does not verify such temperature with used boundary conditions: more power or lower cooling

FCT: variation of beam current

 Maximum temperature at core as a function of beam current, 40 bunches in storage ring

Maximum Value of Plot_Temperature (THs), Scalar

Maximum beam current temperature about 230°C

FCT: influence of air cooling outside

Simulated air cooling around body by introduction of T=const. after 1 mm transversally with air surround

Result: core lower temperature of 0.2°K and body lower temperature by 10.9°K

Therefore: higher influence to body temperature but negligible influence to core temperature

°C

FCT: interim solution

- Keep additional hole open and added air cooling to this hole by small tube
- Temperature on body decreased from 74°C to 50°C with 40 bunches and no damage

FCT: final solution

- Company changed isolation of core material
- 2 additional holes with connectors for air cooling
- Temperature sensor on core

Summary

- Simulation of wake losses to get loss factor
- Calculation of induced power with loss factor and machine settings
- Simulation of Eigenmodes to get loss distribution
- Optional: thermal simulation to get temperature (thermal boundary condition)
- When power >~10 W (my private suggestion):
 - Change geometry or
 - Add cooling: P between 10 and 100 W air cooling, above water cooling

Thanks to Maike Pelzer, Klaus Knaack, Reinhard Neumann

Thank you for your attention!

Homework

- CST 2012, windows 64 bit server, 2 core from 8 used
- WAK solver: 4.2e-4 ns steps, time duration 3 min 24 s
- Eigenmode: time duration 42 min, 23 s

Homework: Eigenmodes

Select Template Group Add new postprocessing step					
R over Q beta=1 (Mode 1)	0D	3D Eigenmode Result	16.15516714		
2 R over Q beta=1 (Mode 2)	0D	3D Eigenmode Result	8.601318016		
R over Q beta=1 (Mode 3)	0D	3D Eigenmode Result	2.837423331e-007		
A R over Q beta=1 (Mode 4)	0D	3D Eigenmode Result	54.42401336		
5 R over Q beta=1 (Mode 5)	OD	3D Eigenmode Result	10.67254373		Ω
R over Q beta=1 (Mode 6)	0D	3D Eigenmode Result	2.585710129e-008		
7 R over Q beta=1 (Mode 7)	0D	3D Eigenmode Result	0.3166451617		
B R over Q beta=1 (Mode 8)	0D	3D Eigenmode Result	2.385015001e-007		
R over Q beta=1 (Mode 9)	0D	3D Eigenmode Result	2.04906381e-006		
0 R over Q beta=1 (Mode 10)	0D	3D Eigenmode Result	16.15105627		
1 Frequency (Mode 1)	0D	3D Eigenmode Result	2.500362801		
2 Frequency (Mode 2)	0D	3D Eigenmode Result	3.661988251		
3 Frequency (Mode 3)	0D	3D Eigenmode Result	4.003345707		GHz
4 Frequency (Mode 4)	0D	3D Eigenmode Result	4.668775219		
5 Frequency (Mode 5)	0D	3D Eigenmode Result	5.034432947		
6 Frequency (Mode 7)	0D	3D Eigenmode Result	5.726119697		
7 Frequency (Mode 10)	0D	3D Eigenmode Result	6.350520231		
8 kloss Mode1	0D	Mix Template Results	126.901096		
g kloss Mode2	0D	Mix Template Results	98.9538828		
0 kloss Mode 3	0D	Mix Template Results	3.568602034e-006		
1 kloss Mode 4	0D	Mix Template Results	798.2600921		V/nC
2 kloss Mode 5	0D	Mix Template Results	168.7988145		
3 kloss Mode 7	OD	Mix Template Results	5.696186063		
4 kloss Mode 10	0D	Mix Template Results	322.2264022		
5 e_Abs(Z)	1DC	Evaluate Field in arbitrary Coordinates			
6 Q-Factor (Perturbation) (Mode 4)	0D	3D Eigenmode Result	1787.594195		
7 Q-Factor (Perturbation) (Mode 10)	0D	3D Eigenmode Result	2057.367542		
8 Q-Factor (Perturbation) (Mode 5)	0D	3D Eigenmode Result	2794.612861		
9 Q-Factor (Perturbation) (Mode 1)	0D	3D Eigenmode Result	963.7593314		
0 Q-Factor (Perturbation) (Mode 2)	0D	3D Eigenmode Result	1119.991155		
				~	

Homework: Eigenmodes

Mode 4: field strength along particle trajectory I made tube longer such that field is not cutted by tube

Homework: Eigenmode ¥/m. 5.69e+08 4.66e+08 3.62e+08 2.59e+08 1.55e+08 0-• -1.55e+08 -2.59e+08 -3.62e+08 -4.66e+08 -5.69e + 08Mode 4 E (peak) Component: Abs 3D Maximum: 5.695e+08 4.669 Frequency: Phase: 0

Field amplitude highest at strip corners

Homework: WAK solver

 $k_{loss} = 857 \text{ V/nC}$

1D Results\Particle Beams\ParticleBeam1\Wake potential