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This talk describes how we arrived at mirror figure tolerances for LCLS hard X-ray mirrors, 
and how they where measured
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• A figure error of length        initiates a phase disturbance of 
length

•The disturbance grows in size as                                               , 
where the Rayleigh length

• Between the flat and the focus mirror, initial disturbances 
may

(1) rapidly expand and intermingle
(2) gradually evolve in both phase and intensity
(3) propagate as a phase-only disturbance

• Most figure errors of interest lead to gradual evolution

- examined by solving the Fresnel equation

The affect of figure errors on phase/intensity depends on the figure error length scale 
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A tolerance for spherical error in flats and focus mirrors can be arrived at analytically – using 
peak intensity at focus as the metric

• An Optical Path Difference (OPD) results when mirror spherical curvature differs in sagittal and tangential planes 
by an amount δ, peak/valley

- OPD ≅ 2Θδ upon reflection
- results in astigmatism at focus,
reducing the peak intensity

• For astigmatism, the relative peak intensity Ι at focus scales as (Born & Wolf, sec. 9.3):

- Maintaining < 80% peak intensity limits the
spherical error in flats to < 6 nm (peak/valley)
- < 2 nm relative error between focus mirrors
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• The focus shift is proportional to the spherical errors in the mirrors

∆f/f = θ/ΝΑ

• In terms of flat and focus mirror geometry, 

∆f =16f2(δ/L)flat /(LΘ)focus

= 7 mm shift per nm of spherical error in an LCLS flat

• the 10 nm of sphere allowed in the flats can be corrected
by a shifting a K/B mirror 70 mm

Once the spherical error is known, it can be reduced to a focus shift ∆f by translating K/B 
focusing optics relative to one another
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Measuring sphere accurately enables a focus shift to be pre-planned prior to mirror 
installation



Tolerances for a-sphere in LCLS flats were specified using the Maréchal criterion

• The criterion describes the reduction in peak intensity at focus due to a random figure error distribution of rms
amplitude δrms

• The error must be < 3 nm rms to achieve > 80% 
of the diffraction limited intensity at focus

• A smaller number applies to focus mirrors, due to
larger graze angle

• Measuring these tolerances with a visible light interferometer requires:

- Measurement noise << 1 nm (must be a phasing interferometer)
- Normal incidence, using only the essential optics (no turning flats, etc.)
- Careful attention to mirror distortion while mounting
- Absolute calibration to < 1 nm with a three-flat test
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A three flat test was used to calibrate a 300 mm diameter interferometer transmission flat to 
< 0.5 nm (rms) along the horizontal axis

• The figure of transmission flats T1, T2, and reflection flat R were solved along a horizontal line using the 
geometries shown

• The solution error was sampled using two additional independent configurations

- both error samples indicate < 0.5 nm rms calibration error
- 0.01 µradian slope



• The flats are fabricated by Zeiss with 150 nm of concave spherical curvature, and < 2 nm rms a-sphere

- they are then coated by Regina Soufli at LLNL, reducing the curvature by about 10 nm
- the sphere is mechanically reduced to < 10 nm peak/valley during mounting, in front of an 
interferometer
- a-sphere is monitored throughout to make sure it is not increased my mounting forces

• Zeiss measures the a-sphere independently prior shipping

- Zeiss & LLNL measurements are in good
agreement

The a-sphere figure error varies from 1 to 2.6 nm (rms) for four 450 mm long flats



• Pixel density limits the maximum curvature that can measured

- Nyquist limit requires > 3 pixels/fringe
- Limits measurements to < 25 microns (peak/valley) 
across the aperture

Focus mirrors with high fringe density can be accurately measured by calibrating the “trace 
back” error

K/B mirror figure  for f = 8.2 m, 
5 milli-radian graze angle

• At high fringe density, sample rays and reference rays travel 
different paths through the interferometer

- a measurement error is observed when a test flat 
is tilted off null fringe

• The correction that would be applied to the f=8.2 m K/B mirror is 
shown

- note a slight miss-alignment in the imaging optics
- the correction is small, but significant compared to 
1 nm tolerance for a-sphere



Conclusions and Future Efforts

• A visible light interferometer was used to accurately measure 450 mm long flats for LCLS

- bend mirrors flat to < 10 nm peak/valley
- measured a-spheric figure ranging from 1 – 2.6 nm rms for four flats

• Focus mirrors can be measured accurately by applying a correction for systematic errors of the 
interferometer imaging optics

- the correction is significant compared to focus mirror figure tolerances

• The interferometers 300 mm aperture requires file stitching, which limits measurement accuracy

- plans are underway to calibrate a 600 mm instrument
- 900 mm aperture instruments are becoming available
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