Metrology testing of bimorph mirrors at Diamond Light Source

Simon Alcock, Geoff Ludbrook, John Sutter, Kawal Sawhney

Optics & Metrology Group Diamond Light Source Ltd, UK

simon.alcock@diamond.ac.uk

Dr. Simon Alcock (Diamond Light Source Ltd)

ACTOP11

Dr. Simon Alcock (Diamond Light Source Ltd)

Overview

Motivation

- Strategy
- Metrology instruments
- Results
- Conclusions

Motivation

• Mirror performance limited by figure errors (mm's \rightarrow L):

- Polishing defects
- Gravitational sag
- Mounting strains
- > Thermal bumps induced by high powered photon beams

How can figure errors be reduced? Use bimorph technology!

ACTOP11

Piezo power!

By applying appropriate voltages to the bimorph piezos, overall figure and localised figure errors are dynamically corrected to create a well defined photon beam

Bimorph mirrors have exceptional potentialbut how can this be harnessed?

- Many degrees of freedom?
- How do the piezos behave?
- Quick & easy optimisation would be nice!

Metrology strategy at Diamond

Accurate measurement of surface topography is required as input to correct active optics

Ex-situ (metrology cleanroom)

Diamond-NOM (slope error) [Simon Alcock - poster]

MiniFiz Fizeau (3D figure & dynamics) [Geoff Ludbrook - posters]

🥺 In-situ (beamline)

- Pencil beam method & X-ray eye camera [John Sutter talk]
- Shearing interferometry [Hongchang Wang talk]
- EEM bimorph & Test beamline (B16) [Kawal Sawhney talk]

Ex-situ metrology

- Diamond-NOM and MiniFiz150 Fizeau interferometer optimise slope / figure errors of active, synchrotron mirrors
- With recent hardware upgrades, can accommodate fully mounted, optical assemblies in their intended beamline orientation
- Significant amounts of synchrotron beamtime can be saved by exsitu optimisation of active optics, prior to beamline installation
- Sub-nm repeatability levels of Diamond-NOM provide information which is not easily measured at the beamline

Tour of Metrology cleanroom lab & B16 on Monday afternoon

Diamond-NOM

- Non-contact, slope measuring profiler
- Scan range: 1500mm x 300mm
- Slope errors <100nrad rms</p>
- Sub-nm repeatability
- Opward or side facing acquisition
- Thermal stability <10m°C</p>
- 1st replication of BESSY-NOM concept

"The Diamond-NOM: a non-contact profiler capable of characterizing optical figure error with sub-nm repeatability"

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert. Nucl. Instr. and Meth. A, Volume 616, Issue 2-3, p. 224-228 (2010)

ACTOP11

"MiniFiz" Fizeau interferometer

"A double-pass Fizeau interferometer system for measuring the figure error of large synchrotron optics" G. D. Ludbrook, S. G. Alcock, S. Scott, Proc. SPIE 7801 (2010).

Can acquire data in single pass, double pass, or stitching geometries

Results

Diamond-NOM & MiniFiz

- Super-polished (EEM) VFM, 150mm
- Re-polished VFM (I04), 600mm
- 🞌 HFM (I18),150mm
- Piezo response functions & matrix correction method
- Dynamic evolution of surface in response to piezo voltage changes
- Stability & reproducibility of curvature

High quality metrology \rightarrow better optical performance!

Enter the Matrix!

Piezo response functions gives complete control over bimorph

Matrix inversion method predicts required voltage corrections

RedDodo.com	Redl	Dodo.com	RedDodo.c	om

Piezo response functions

Assess how piezos respond to applied voltage (+25V)

 \rightarrow Matrix gives figure corrections & bend parameters

Sub-nanometre figure control using Diamond-NOM

Repolished bimorph mirror

Large slope "spikes" (>10urad PV) at interface between piezos

Repolished bimorph mirror

♦ After repolishing at SESO, slope error = 3512nrad $\rightarrow 392$ nrad rms

Repolished bimorph mirror

*Saw tooth" figure errors removed by repolishing

Bend performance

Use Diamond-NOM to measure figure and curvature as a function of applied voltages

Dynamics of bimorphs

Apply voltages and record curvature (4min for each Diamond-NOM scan)

Power supply comparison

• Two different power supplies give very similar slope errors

MiniFiz: 2D topography

Capture 2D topography of mirror surface in <1minute</p>

 \rightarrow Dynamic effects & enables rapid iterations of modifications

Figure of I04 VFM (over full surface 650mm)

Figure error of I04 VFM (over active surface 550mm)

- MiniFiz scans reveal I04 bimorph mirror is slightly twisted
- Voltages found from Diamond-NOM shown to optimise figure error of each coating stripe

ACTOP11

Conclusions

Comprehensive programme of ex-situ & in-situ methods to investigate active optics

- Suite of ex-situ metrology instruments and protocols to quickly and easily optimise bimorph mirrors
- Metrology instruments can accommodate fully mounted, optical assemblies in their intended beamline geometry
- \rightarrow Develop collaborations to push novel active optics to their limits!

Thank you for your attention! ③

Super-polished (EEM) bimorph mirror

- 8 piezo bimorph (SESO), 150mm long, silica substrate
- EEM treatment (JTEC) on central ~120mm
- Elliptical pre-figure (p=41.5m, q=0.4m, θ=3mrad)

World's 1st super-polished bimorph mirror

Super-polished (EEM) bimorph mirror

